
Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 1

ALGORITHMS OVER ARC-TIME INDEXED FORMULATIONS FOR SINGLE AND PARALLEL
MACHINE SCHEDULING PROBLEMS

Artur Pessoa
Departamento de Engenharia de Produção – Universidade Federal Fluminense

Rua Passo da Pátria, 156, São Domingos, 24210-240, Niterói, RJ
artur@producao.uff.br

Eduardo Uchoa
Departamento de Engenharia de Produção – Universidade Federal Fluminense

Rua Passo da Pátria, 156, São Domingos, 24210-240, Niterói, RJ
uchoa@producao.uff.br

Marcus Poggi de Aragão
Departamento de Informática – Pontif́ıcia Universidade Católica do Rio de Janeiro

Rua Marquês de São Vicente, 225, Gávea, 22453-090, Rio de Janeiro, RJ
poggi@inf.puc-rio.br

Rosiane Rodrigues
PESC/COPPE – Universidade Federal do Rio de Janeiro

Cidade Universitária, CT, Bloco H, Sala 319, 21941-972, Rio de Janeiro, RJ
rosiane@cos.ufrj.br

Abstract

This paper presents algorithms for single and parallel identical machine scheduling prob-
lems. While the overall algorithm can be viewed as a branch-cut-and-price over a very large
extended formulation, a number of auxiliary techniques are necessary to make the column
generation effective. Those techniques include a powerful fixing by reduced costs and a new
proposed dual stabilization method. We tested the algorithms on instances of the classical
weighted tardiness problem. All the 375 single machine instances from the OR-Library, with
up to 100 jobs, are solved to optimality in reasonable computational times and with minimal
branching, since the duality gaps are almost always reduced to zero in the root node. Many
multi-machine instances with 40 and 50 jobs are also solved to optimality for the first time.
The proposed algorithms and techniques are quite generic and can be used on several related
scheduling problems.

Keywords: Scheduling: algorithms; Integer Programming: formulations, column genera-
tion, cutting planes

Resumo

Este artigo apresenta algoritmos para problemas de escalonamento de uma máquina ou de
máquinas idênticas paralelas. O algoritmo geral pode ser visto como um branch-cut-and-price
sobre uma formulação extendida de grande tamanho, porém algumas técnicas auxiliares são
necessárias para que a geração de colunas seja efetiva. Essas técnicas incluem uma poderosa
fixação por custos reduzidos e um novo método de estabilização dual. Os algoritmos foram
testados em instâncias do clássico problema de escalonamento com penalidades por atrasos

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 2

poderadas. Todas as 375 instâncias de uma máquina da OR-Library foram resolvidas de
forma ótima em tempo computacional razoável e quase sem ramificações, porque os gaps
de dualidade são quase sempre zero no nó raiz da árvore de enumeração. Muitas instâncias
multi-máquinas com 40 e 50 tarefas puderam ser resolvidas pela primeira vez. Os algoritmos
e técnicas propostos são bastante genéricos e podem ser utilizados em vários outros tipos de
problemas de escalonamento.

Palavras-Chave: Escalonamento: algoritmos; Programação Inteira: formulações, geração
de colunas, planos de corte

1 Introduction

Let J = {1, . . . , n} be a set of jobs to be processed in a set of parallel identical machines
M = {1, . . . , m} without preemption. Each job has a positive integral processing time pj and
is associated with a cost function fj(Cj) over its completion time. Each machine can process
at most one job at a time and each job must be processed by a single machine. The scheduling
problem considered in this paper consists in sequencing the jobs in the machines (perhaps
introducing idle times) in order to minimize

∑n
j=1 fj(Cj).

The generality of the cost function permits viewing many classical scheduling problems as
particular cases of the above defined problem. For example, one of the most widely studied
such problems is the single machine weighted tardiness scheduling problem [19]. In this case
each job has a due date dj and a weight wj , the cost function of job j is defined as wjTj , where
Tj = max{0, Cj − dj} is the tardiness of job j with respect to its due date. This strongly NP-
hard problem [12] is referred in the scheduling literature as 1||∑wjTj . The variant with parallel
identical machines is referred as P ||∑wjTj . In fact, any single machine or parallel identical
machines problem where the cost function is based on penalties for job earliness or lateness
(possibly including an infinity penalty for a job started before its release date or finished after
its deadline) is included in that general definition.

Mathematical programming exact approaches for these scheduling problems use two distinct
kinds of formulations [22]: (i) MIP formulations where job sequence is represented by binary
variables and completion times by continuous variables; (ii) IP time indexed formulations, where
the completion time of each job is represented by binary variables indexed over a discretized
time horizon (for examples, [8, 25, 29, 24]). The latter formulations are known to yield better
bounds, but can not be directly applied to many instances due to their pseudo-polynomially
large number of variables. Van den Akker, Hurkens and Savelsbergh [28] were the first to use
column generation to solve the classical time indexed formulation introduced by [8]. Avella,
Boccia and D’Auria [1] could find near-optimal solutions (gaps bellow 3%) for instances with
n up to 400, using Lagrangean relaxation to approximate that bound. Recently, Pan and Shi
[15] showed that the classical time indexed bound can be exactly computed by solving a cleverly
crafted transportation problem. This result led to a branch-and-bound for the 1||∑wjTj that
consistently solved all the OR-Library instances with up to 100 jobs, a very significant improve-
ment with respect to previous algorithms. Bigras, Gamache and Savard [5] proposed a column
generation scheme that improves upon the one in [28] by the use of a temporal decomposition to
improve convergence. The resulting branch-and-bound is competitive and could solve 117 out
of the 125 instances with 100 jobs solved by [15]. Anyway, all exact algorithms over the time
indexed formulation may need to explore large enumeration trees.

This paper presents an extended formulation for the single and parallel machine scheduling

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 3

problems using an even larger number of variables, one for each pair of jobs and each possi-
ble completion time. This formulation is proved to yield strictly better lower bounds than the
usual time indexed formulation. By applying a Dantzig-Wolfe decomposition, it is obtained
a reformulation with an exponential number of columns, corresponding to paths in a suitable
network. As done in [15, 5], we tested the approach on weighted tardiness instances. However,
solving this reformulation using standard column generation techniques is not practical even for
medium-sized instances of that problem. We attribute that to following reasons: (i) extreme
degeneracy, in fact, when m = 1 it can happen that any optimal basis has just one variable with
a positive value; (ii) extreme variable symmetry, in the sense that there are usually many alter-
native solutions with the same cost; and (iii) an expensive pricing with complexity Ω(n3pavg/m),
where pavg is the average job processing time. Therefore, in order to obtain the desired bounds
in reasonable times, we used the following additional techniques:

• A very efficient procedure to fix variables in the original formulation by reduced costs.

• A dual stabilization procedure to further speedup column generation. This procedure
differs from those found in the literature (like [7, 3]) by its simplicity, just one parameter
has to be tuned, and by some interesting theoretical properties.

• The possible use of the Volume algorithm [2] in order to provide a fast hot start for the
column generation.

After solving that reformulation, besides having a bound close to the optimal, the number
of non-fixed variables is usually quite small. One can then proceed by separating cuts. We used
the Extended Capacity Cuts, a powerful family of cuts first introduced in [26]. As the fixing
procedure applied after each round of cuts is likely to further reduce instance size, at some
point is usually advantageous to stop the column generation and continue the optimization
using a branch-and-cut (still using the above mentioned cuts) over the few remaining variables.
In almost all 1||∑wjTj benchmark instances from the OR-Library, with n ∈ {40, 50, 100}, we
found that the duality gaps were reduced to zero still in the root node.

The same algorithm was also tested on the P ||∑wjTj , a harder problem. We do not
know any paper claiming optimal solutions on instances of significant size. Our branch-cut-
and-price could solve instances derived from those in the OR-Library, with m ∈ {2, 4} and
n ∈ {40, 50}, consistently. However, the solution of several such multi-machine instances did
require a significant amount of branching.

This article on scheduling can be viewed as part of a larger investigation on the use of
pseudo-polynomially large extended formulations in the context of robust branch-cut-and-price
algorithms. Previous experiences include the capacitated minimum spanning tree problem [27]
and several vehicle routing problem variants [16, 17].

2 Formulation and Cuts

The classical time indexed formulation for the single machine scheduling problem [8] assumes
that all jobs must be processed in a given time horizon ranging from 0 to T . Let binary variables
yt

j indicate that job j starts at time t on some machine.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 4

Minimize
∑
j∈J

T−pj∑
t=0

fj(t + pj)yt
j (1a)

S.t.
T−pj∑
t=0

yt
j = 1 (j ∈ J), (1b)

∑
j ∈ J,

t + pj ≤ T

t∑
s=max{0,t−pj+1}

ys
j ≤ 1 (t = 0, . . . , T − 1), (1c)

yt
j ∈ {0, 1} (j ∈ J ; t = 0, . . . , T − pj). (1d)

This formulation can be used for the identical parallel machines scheduling problem by changing
the right-hand side of (1c) to m.

The proposed formulation also assumes an execution time horizon from 0 to T , the machines
are idle at time 0 and must be idle again at time T . Let binary variables xt

ij , i 6= j, indicate
that job i completes and job j starts at time t, on the same machine. Variables xt

0j indicate
that job j starts at time t in a machine that was idle from time t − 1 to t, in particular, x0

0j

indicate that j starts on some machine at time 0. Variables xt
i0 indicate that job i finishes at

time t at a machine that will stay idle from time t to t + 1, in particular, variables xT
i0 indicate

that i finishes at the end of the time horizon. Finally, integral variables xt
00 indicate the number

of machines that were idle from time t− 1 to t that will remain idle from time t to t + 1. Define
set J+ as {0, 1, . . . , n} and p0 = 0. The formulation follows:

Minimize
∑

i∈J+

∑
j∈J\{i}

T−pj∑
t=pi

fj(t + pj)xt
ij (2a)

S.t.
∑

i∈J+\{j}

T−pj∑
t=pi

xt
ij = 1 (∀ j ∈ J), (2b)

∑
j ∈ J+ \ {i},
t− pj ≥ 0

xt
ji −

∑
j ∈ J+ \ {i},

t + pi + pj ≤ T

xt+pi
ij = 0

(∀ i ∈ J ;
t = 0, . . . , T − pi),

(2c)

∑
j ∈ J+,

t− pj ≥ 0

xt
j0 −

∑
j ∈ J+,

t + pj + 1 ≤ T

xt+1
0j = 0 (t = 0, . . . , T − 1), (2d)

∑
j∈J+

x0
0j = m (2e)

xt
ij ∈ Z+ (∀ i ∈ J+; ∀ j ∈ J+ \ {i};

t = pi, . . . , T − pj), (2f)
xt

00 ∈ Z+ (t = 0, . . . , T − 1). (2g)

Equations (2c), (2d), (2e) and the redundant equation
∑

i∈J+

xT
i0 = m (3)

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 5

can be viewed as defining a network flow of m units over an acyclic layered graph G = (V, A).
As this flow has just one source and one destination, any integral solution can be decomposed
into a set of m paths corresponding to the schedules (sequences of jobs and idle times) of each
machine. Constraints (2b) impose that every job must be visited by exactly one path, and
therefore must be processed by one machine. An example of the network corresponding to an
instance with m = 2, n = 4, p1 = 2, p2 = 1, p3 = 2, p4 = 4, and T = 6 is depicted in Figure
1. The possible integral solution shown has variables x0

03, x
0
04, x

2
32, x

3
20, x

4
01, x

4
40, x

5
00, x

6
00, x

6
10 with

value 1. The paths in this solution correspond to the machine schedules (3, 2, 0, 1) and (4, 0, 0),
where each unit of idle time in the schedule is represented by a 0.

1 2 3 4 5 6t = 0

j = 0

1

2

3

4

x
0 3

0

x
0 4

0

x
4 0

4

x
3 2

2

x
2 0

3

x
0 1

4
x

1 0

6

x
0 0

5 x
0 0

6

Figure 1: Example of an integral solution of the arc-time indexed formulation represented as
paths in the layered network.

Proposition 1 The arc-time indexed formulation dominates the time indexed formulation.

Proof: Any solution x̄ of the linear relaxation of (2) with cost z can be converted into a solution
ȳ of the linear relaxation of (1) with the same cost by setting ȳt

j =
∑

i∈J+\{j} x̄t
ij , j ∈ J, t =

0, . . . , T − pj . As x̄ satisfies (2b), ȳ satisfies (1b). In a similar way, the constraints (2c), (2d)
and (2e) on x̄ imply constraints (1c) (with right-hand size m) on ȳ.

In order to show that the arc-time indexed formulation can be strictly better than the time
indexed formulation, define an instance of the 1||∑wjTj problem where n = 3; p1 = 100, p2 =
300, p3 = 200; d1 = 200, d2 = 300, d3 = 400; w1 = 6, w2 = 3, w3 = 2; and T = 600. The optimal
solution of this instance costs 700 and has job sequence (1,2,3). The solution of the linear
relaxation of the time indexed formulation with cost 650 is a half-half linear combination of two
pseudo-schedules (sequences of jobs and idle times where jobs may repeat): (1, 1, 3, 3) and (2, 2)
(the variables with value 0.5 are y0

1, y
0
2, y

100
1 , y200

3 , y300
2 , y400

3). Those pseudo-schedules, where jobs
repeat in consecutive positions, can not appear in the path decomposition of a solution of the
linear relaxation of the arc-time indexed formulation because there are no variables of format
xt

jj , j ∈ J . The optimal solution of the arc-time indexed relaxation is integral for this instance.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 6

It can be seen that if the arc-time indexed formulation is weakened by introducing the
missing xt

jj variables, one would obtain a formulation that is equivalent to the time indexed
formulation. This means that formulation (2) is just slightly better than formulation (1). For
example, by introducing two additional jobs 4 and 5 with zero weights and unit processing times
to the previous instance (that now has n = 5 and T = 602), the linear relaxation of the arc-time
indexed formulation would yield a fractional solution of cost 657.5 corresponding to a half-half
combination of two pseudo-schedules: (1, 4, 1, 3, 4, 3) and (2, 5, 2, 5) (the variables with value 0.5
are x0

01, x
0
02, x

100
14 , x101

41 , x201
13 , x300

25 , x301
52 , x401

34 , x402
43 , x601

25 , x602
30 , x602

50). However, the following simple
preprocessing steps significantly improves the arc-time indexed formulation:

Proposition 2 For jobs i and j in J , i < j, let xt
ij and x

t−pi+pj

ji be a pair of variables defined
in (2) and let ∆ = (fi(t) + fj(t + pj))− (fj(t− pi + pj) + fi(t + pj)). If ∆ ≥ 0 variable xt

ij can

be removed; if ∆ < 0, x
t−pi+pj

ji can be removed.

Proof: For any given schedule, swapping two consecutive jobs in the same machine does not
affect the rest of the scheduling. Therefore, a schedule where j follows i at time t can be
compared with the schedule where i and j are swaped (which means that i follows j at time
t−pi +pj) by computing the ∆ expression. If ∆ > 0 the first schedule is worse than the second,
so xt

ij never appears in an optimal solution. If ∆ < 0, x
t−pi+pj

ji never appears in an optimal
solution. If ∆ = 0, both schedules are equivalent. Therefore, for each pair of variables xt

ij and

x
t−pi+pj

ji , where i < j, (all those pairs are mutually disjoint), one variable can be eliminated
without removing at least one optimal solution.

A similar reasoning shows that:

Proposition 3 For job j in J , let xt
j0 and x

t−pj+1
0j be a pair of variables defined in (2) and let

∆ = fj(t)− fj(t + 1). If ∆ > 0 variable xt
j0 can be removed; if ∆ ≤ 0, x

t−pj+1
0j can be removed.

From now on we refer to (2) minus the variables removed by applying Propositions 2 and
3 as the arc-time indexed formulation. Similarly, the arc set A in the associated acyclic graph
G = (V, A) is assumed to not contain arcs corresponding to the removed variables. It can be
seen that the optimal solution of the linear relaxation of this amended formulation on the above
defined instance with n = 5 is integral. The pseudo-schedules (1, 4, 1, 3, 4, 3) and (2, 5, 2, 5) can
not appear anymore because variables x101

41 , x301
52 , x402

43 are removed by Proposition 2. As far as
we know, this formulation was never used in the literature, neither for the general scheduling
problem, nor for its particular cases. Picard and Queyranne [18] proposed a three-index formu-
lation for the 1||∑wjTj over variables xk

ij , meaning that job j follows job i and is the k-th job
to be scheduled. That formulation contains O(n3) variables and O(n2) constraints, while the
arc-time indexed formulation has O(n2T) variables and O(nT) constraints.

The pseudo-polynomially large number of variables and constraints makes the direct use of
this formulation prohibitive. However, one can rewrite it in terms of variables associated to the
pseudo-schedules corresponding to the possible source-destination paths in G. Let P be the set
of those paths. For every p ∈ P , define a variable λp. Define qtp

a as one if arc at (associated to
the variable xt

a, a = (i, j)) appears in the path p and zero otherwise. Define f0(t) as zero for
any t.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 7

Minimize
∑

(i,j)t∈A

fj(t + pj)xt
ij (4a)

S.t. ∑
p∈P

qtp
a λp − xt

a = 0 (∀ at ∈ A), (4b)

∑
(j,i)t∈A

xt
ji = 1 (∀ i ∈ J), (4c)

∑
(0,j)0∈A

x0
0j = m (4d)

λp ≥ 0 (∀ p ∈ P), (4e)
xt

a ∈ Z+ (∀ at ∈ A). (4f)

Formulation (4), containing both λ and x variables, is said to be in the explicit format [20].
Eliminating the x variables and relaxing the integrality, the Dantzig-Wolfe Master (DWM) LP
is written as:

Minimize
∑
p∈P

(
∑

(i,j)t∈A

qtp
ij fj(t + pj))λp (5a)

S.t. ∑
p∈P

(
∑

(j,i)t∈A

qtp
ji) λp = 1 (∀ i ∈ J), (5b)

∑
p∈P

(
∑

(0,j)0∈A q0p
0j)λp = m (5c)

λp ≥ 0 (∀ p ∈ P). (5d)

Note that
∑

(0,j)0∈A q0p
0j = 1 for any p ∈ P . A generic constraint l of format

∑
at∈A αt

alx
t
a ≥ bl

can also be included in the DWM as
∑P

p=1 (
∑

at∈A αt
alq

tp
a)λp ≥ bl, using the same variable

substitution used to convert (4c) into (5b) and (4d) into (5c). Suppose that, at a given instant,
there are r + 1 constraints in the DWM. Assume also that the constraint (5c) has the dual
variable π0, the constraint (5b) corresponding to i ∈ J has the dual variable πi, and each
possible additional constraint l, n < l ≤ r has the dual variable πl. The reduced cost of an arc
at = (i, j)t is defined using the α coefficients of the constraints in the x format as:

c̄t
a = fj(t + pj)−

r∑

l=0

αt
alπl. (6)

In the experiments described in this article we separated Extended Capacity Cuts, a very
generic family of cuts that have already been shown to be effective on the capacitated minimum
spanning tree problem [27] and on many vehicle routing problem variants [16, 17].

2.1 Extended Capacity Cuts

Let S ⊆ J be a set of jobs. Define δ−(S) = {(i, j)t ∈ A : i /∈ S, j ∈ S}, and δ+(S) = {(i, j)t ∈
A : i ∈ S, j /∈ S}. It can be seen that

∑
at∈δ+(S)

txt
a −

∑
at∈δ−(S)

txt
a = p(S), (7)

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 8

where p(S) =
∑

i∈S pi, is satisfied by the solutions of (2). An Extended Capacity Cut (ECC)
over S is any inequality valid for the polyhedron given by the convex hull of the 0-1 solutions
of (7) [27]. In particular, the Homogeneous Extended Capacity Cuts (HECCs) are the subset of
the ECCs where all entering variables with the same time-index have the same coefficients, the
same happening with the leaving variables. For a given set S, define aggregated variables vt and
zt as follows:

vt =
∑

at∈δ+(S)

xt
a (t = 1, . . . , T), (8)

zt =
∑

at∈δ−(S)

xt
a (t = 1, . . . , T). (9)

The balance equation over those variables is:

T∑
t=1

tvt −
T∑

t=1
tzt = p(S) . (10)

For each possible pair of values of T and D = p(S), a polyhedron P (T, D) induced by the non-
negative integral solutions of (10) is defined. The inequalities that are valid for these polyhedra
are HECCs. Dash, Fukasawa and Gunluk [6] recently showed that one can separate over P (T, D)
in pseudo-polynomial time. Strategies for choosing candidate sets S to perform that separation
are discussed in [27, 16, 17].

3 Column Generation

The pricing subproblem consists of finding a minimum origin-destination path in the acyclic
network G = (V, A) with respect to the reduced costs given by (6). This can be done in
Θ(|A|) time as follows. Let F (j, t) denote the minimum-reduced cost subpath that starts at
the origin and finishes with an arc (i, j)t. Assume that mini:(i,j)t∈A evaluates to infinity when
{i : (i, j)t ∈ A} is an empty set. We use the following dynamic programming recursion:

F (j, t) =
{

0, if j = 0 and t = 0;
mini:(i,j)t∈A{F (i, t− pi) + c̄t

ij}, otherwise.

If Zsub = F (0, T) < 0, there is a column with negative reduced cost. As |A| = Θ(n2T) and T
itself is Ω(npavg/m), where pavg is the average job processing time, solving this pricing problem
can be quite time consuming. For example, if m = 1, n = 100 and pavg = 50, there are more
than 25 million arcs in A.

Severe convergence problems can be observed when solving the DWM by standard column
generation techniques, specially when m = 1. In this case, it is quite possible to have instances
where any optimal basis has just one variable with a positive value. This extreme degeneracy is
not limited to the final basis, the intermediate bases found during the column generation are also
very degenerated. It is not unusual to observe situations where hundreds of expensive pricing
iterations are necessary to escape from such degenerated points. We also conjecture that the
poor convergence of the column generation in problems like 1||∑wjTj is also related to a kind
of variable symmetry, in the sense that there is usually many alternative pseudo-schedules with
similar costs. This means that the linear programming polyhedra defined by the DWM may
have several extreme points lying close to the hyperplane perpendicular to the objective function

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 9

and touching the optimal face. Therefore, the part of the polyhedra defined by near-optimal
extreme points may be “flat” and also have a complex topology, in such a way that the reduced
costs give little guidance on how to reach the optimal face.

3.1 Fixing x variables by reduced costs

The following procedure is devised to eliminate xt
ij variables (and the corresponding arcs from

A) by proving that they can not assume positive values in any integral solution that improves
upon the current best known integral solution. This procedure can be applied at any point
of the column generation. The direct benefit of this elimination is to reduce the pricing effort
at subsequent iterations. However, we verified that the fixing procedure also gives substantial
undirect benefits:

• As less origin-destination paths in G are allowed, the number of nearly-equivalent alter-
native pseudo-schedules is also reduced, improving column generation convergence.

• It is possible that xt
ij variables with a positive value in an optimal fractional solution are

removed (this can only happen if this value is strictly less than 1, unless the current best
known integral solution is already optimal). This means that the fixing procedure may
improve the lower bounds provided by the arc-time indexed formulation.

We first define the Lagrangean lower bound L(π) that is obtained whenever the pricing
subproblem is solved with a vector π of multipliers corresponding to the current constraints in
the DWM. While multipliers π0 to πn are unrestricted, if l > n, πn+1 to πl must be non-negative.
This Lagrangean subproblem can be viewed as arising from (4) by dualizing constraints (4c),
(4d) and any other x constraint that may have been added. Constraints (4b), (4d), variable
bounds and the integrality constraints are kept in this problem. Note that (4d) is both dualized
and kept as constraint.

L(π) = Min
∑

at∈A

c̄t
ax

t
a +

r∑
l=0

blπl (11a)

S.t. ∑
p∈P

qtp
a λp − xt

a = 0 (∀ at ∈ A), (11b)

∑
(0,j)0∈A

x0
0j = m (11c)

λp ≥ 0 (∀ p ∈ P), (11d)
xt

a ∈ Z+ (∀ at ∈ A). (11e)

For each possible π, an optimal solution of (11) can be constructed by setting λp∗ = m,
where p∗ is a path of minimum reduced cost, all other λ variables are set to zero, the x variables
are set in order to satisfy (11b). Therefore, the lower bound L(π) is equal to m.Zsub +

∑r
l=0 blπl.

In particular, if πRM is an optimal dual solution (with value ZRM) of the restricted DWM in
some iteration of the column generation, L(πRM) = m.Zsub +ZRM . Of course, any optimal dual
solution for the DWM yields Zsub = 0, giving a lower bound equal to the optimal value of the
DWM.

For a given at ∈ A, define L(π, a, t) as the solution of (11) plus the constraint xt
a ≥ 1. If

L(π, a, t) ≥ ZINC , where ZINC is the value of the best known integral solution, variable xt
a can be

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 10

removed because it can not appear in any improving solution. Let Zat
sub be the minimum reduced

cost of a path that includes the arc at ∈ A. An optimal solution can now be defined by setting
the λ variable corresponding to a path through at with minimum reduced cost to 1 and setting
λ∗p = m−1. Then L(π, a, t) = Zat

sub+(m−1).Zsub+
∑r

l=0 blπl. If πRM is an optimal dual solution
of the restricted DWM, this expression reduces to L(πRM , a, t) = Zat

sub + (m− 1).Zsub + ZRM .
The main point of this subsection is showing that, if we already have solved the above

mentioned forward dynamic programming recursion to obtain Zsub, we can obtain Zat
sub values

for all arcs at ∈ A in Θ(|A|) time by just solving a second backward dynamic programming
as follows. Let B(i, t) denote the minimum reduced cost of a subpath that starts with an
arc (i, j)t and finishes at the destination. Assume that minj:(i,j)t∈A evaluates to infinity when
{j : (i, j)t ∈ A} is an empty set. We have the following dynamic programming recursion:

B(i, t) =
{

0, if i = 0 and t = T ;
minj:(i,j)t∈A{B(j, t + pj) + c̄t

ij}, otherwise.

The value of Zat
sub, a = (i, j), is then given by F (i, t− pi) + c̄t

ij + B(j, t + pj).
Summarizing, this is a strong arc fixing procedure that is about two times as costly as the

ordinary pricing step (after the B values are computed, checking which variables are fixed takes
additional Θ(|A|) time). In practice, this cost can be diluted by not trying to fix variables at
every column generation iteration.

It must be mentioned that Irnich et al. [11] have, independently of us, proposed a similar
fixing procedure for problems where the columns have a path structure. In their work, the
computational experiments were performed in the Vehicle Routing Problem with Time Windows.

3.2 Dual Stabilization

Du Merle et al. [7] proposed a dual stabilization technique to alleviate the convergence
difficulties in column generation based on a simple observation: the columns that will be part
of the final solution are only generated in the very last iterations, when the dual variables are
already close to their optimal values. They also observed that dual variables may oscillate wildly
in the first iterations, leading to “extreme columns” that have no chance of being in the final
solution. Their dual stabilization is based on introducing artificial variables forming positive
and negative identities in the restricted DWM; the costs and upper bounds of those artificial
variables are chosen in order to model a stabilizing function that penalizes the dual variables from
moving away from the stability center π̄ (the current best estimate on the optimal dual values).
The stabilizing function and the stability center are changed along the column generation, until
π̄ converges to an optimal dual solution while the stabilizing function becomes a null function.
In fact, several other techniques based on stabilizing functions penalizing dual moves far away
from stability centers have been already proposed since the seventies in the context of non-
differentiable optimization, as surveyed in [13].

A drawback of all mentioned techniques is the existence of many parameters to be calibrated.
Recent implementations of Du Merle et al.-like column generation stabilization [14, 3] strongly
recommend on using a 5-piecewise linear stabilizing function for each dual variable l. Even
assuming that those functions will have a symmetry axis at the point π̄l, there are still 4
parameters to be chosen by dual variable. Moreover, one has to determine when and how the
stabilizing functions and center should be updated along the column generation. A second
drawback of this technique is the increase of the size of the restricted DWM, a 5-piecewise linear
dual penalizing function requires 4 additional variables (that are never removed) by constraint.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 11

The newly proposed stabilization technique is very simple, there is a single scalar parameter
α to be chosen (and this parameter is kept constant along the column generation) and it does
not require any change (like additional artificial columns) in the restricted DWM. Let π̄ be the
current best known vector of dual multipliers, i.e., the vector providing the greater lower bound
L(·) among all vectors ever evaluated. Let πRM be an optimal dual solution (with value ZRM)
of the restricted DWM on some iteration of the column generation. Instead of solving the next
pricing subproblem as usual using the πRM values, we propose solving the pricing using the
vector

πST = α.πRM + (1− α).π̄,

where 0 < α ≤ 1 is a chosen constant. Let s be the path with minimum reduced cost with respect
to πST found by the pricing procedure. If s has a negative reduced cost with respect to πRM , the
corresponding column is added to the DWM for the next iteration. Moreover, if L(πST) > L(π̄),
then πST is an improving dual vector and it becomes the new center of stabilization (π̄ ← πST).
A more algorithmic description of the technique follows:

Algorithm 1 Column Generation with the New Dual Stabilization
Input: parameter α, 0 < α ≤ 1.

• Initialize the restricted DWM, perhaps using artificial variables, to ensure its feasibility;

• π̄ ← 0;

• Repeat

– Solve the restricted DWM, obtaining the value ZRM and the vector πRM (after that,
if desired, also remove some non-basic variables from it);

– πST ← α.πRM + (1− α).π̄;

– Solve the pricing procedure using the vector πST , obtaining L(πST) and the variable
with minimum reduced cost s;

– If L(πST) > L(π̄) Then π̄ ← πST ;

– If s has negative reduced cost with respect to πRM Then add s to the restricted
DWM;

• Until ZRM − L(π̄) < ε

We now have to prove that Algorithm 1 is correct, i.e., it terminates in a finite number of
iterations with an optimal solution of the DWM.

Lemma 1 If the solution of the pricing subproblem with vector πST does not give a column with
negative reduced cost with respect to vector πRM , then L(πST) ≥ L(π̄) + α(ZRM − L(π̄)).

Proof: Suppose that the restricted DWM at a certain iteration contains variables corresponding
to a set S ⊆ P . Define

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 12

L(S, π) = Min
∑

at∈A

c̄t
ax

t
a +

r∑
l=0

blπl (12a)

S.t. ∑
p∈S

qtp
a λp − xt

a = 0 (∀ at ∈ A), (12b)

∑
(0,j)0∈A

x0
0j = m (12c)

λp ≥ 0 (∀ p ∈ S), (12d)
xt

a ∈ Z+ (∀ at ∈ A). (12e)

Of course, L(P, π) = L(π). Define S+ = S ∪ {s}, where s is the path with minimum reduced
cost with respect to πST . We will use the following properties of the functions L(S, π), L(S+, π)
and L(π):

1. For all π, L(S, π) ≥ L(S+, π) ≥ L(π).

2. For any fixed X ⊆ P , L(X, π) is a concave function of π.

3. L(S, πRM) = ZRM .

4. L(S+, πST) = L(πST).

5. If L(S, πRM) > L(S+, πRM), path s has a negative reduced cost with respect to πRM .

Now, assume that L(πST) < L(π̄) + α(ZRM −L(π̄)). Since L(π̄) ≤ L(S+, π̄), we obtain that

L(πST) = L(S+, πST) < αL(S, πRM) + (1− α)L(S+, π̄). (13)

By the concavity of L(S+, π), we have

L(S+, πST) = L(S+, απRM + (1− α)π̄) ≥ αL(S+, πRM) + (1− α)L(S+, π̄). (14)

From (13) and (14), we obtain that L(S, πRM) > L(S+, πRM).
A misprice happens when there are columns with negative reduced cost with respect to

vector πRM but the solution of the pricing subproblem using πST does not provide such a
column. Lemma 1 implies that a misprice is not a waste of time, quite to the contrary, it is a
guarantee that L(πST) is a new best lower bound that significantly improves upon L(π̄). More
precisely, it states that a misprice must reduce the gap ZRM − L(π̄) (the algorithm terminates
when this gap is sufficiently small, as discussed next) by at least a factor of 1/(1 − α). After
a misprice, π̄ ← πST , therefore, although πRM does not change (no column was added to the
restricted DWM), the next pricing will be performed using a different πST .

Theorem 1 The proposed stabilized column generation algorithm always finds an optimal basic
feasible solution for the DWM in a finite number of iterations.

Proof: Let Z∗ be the optimum value for the DWM. Since the DWM has a finite number of basic
feasible solutions, ZRM can only assume a finite number of values. Let ε be a lower bound for
the smallest difference between the value of a non-optimal basic feasible solution and Z∗ (such

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 13

lower bound can be actually computed, for example, by the formula shown in [4], page 375).
Let g1 be the gap ZRM − L(π̄) after the first restricted DWM LP is solved and the first L(π̄)
is evaluated (for example, if the restricted DWM is initialized with the columns from a known
feasible solution with value ZINC and π̄ is initialized with zero, g1 ≤ ZINC). By Lemma 1, the
gap is ensured to be less than ε after dlog 1

1−α

g1

ε e + 1 misprices. Thus, ZRM = Z∗ after this
number of misprices. On the other hand, it can happen that the number of misprices never
reaches the previous limit. In this case, the convergence to an optimal solution of the DWM
must occur (if all generated columns are kept in the restricted DWM or if some lexicographic
cost perturbation is used) after a sufficient number of columns with negative reduced costs are
generated.

Remark that it is possible that the solution of the restricted DWM is already an optimal
basic solution for the DWM, but the gap ZRM −L(π̄) is still positive. As the stabilized method
does not perform pricings using the vector πRM , it can not prove that optimality. However,
since there are no columns with negative reduced cost with respect to πRM , Lemma 1 assures
that every subsequent pricing using the vector πST will reduce this gap by at least a constant
factor. Therefore, the gap converges exponentially fast to zero, thus proving the optimality of
the restricted DWM solution. Some additional remarks about the proposed stabilization:

• In order to obtain the desired stabilizing effect, the value of α should be small (we used a
fixed value of 0.1 in our experiments), so the vector πST does not deviate much from the
current stability center π̄.

• When this column generation stabilization is combined with the fixing procedure described
in Subsection 3.1, it can be interesting to adopt a criterion that only try the fixing with
improving vectors πST (i.e., those that became the new center of stabilization). In practice
this keeps the computational cost of the fixing very low, without a significant impact on
the number of variables that are eliminated.

3.3 Hot Starting with the Volume Algorithm

The above described stabilization can be initialized with any π̄ (for example, zero) and will
still converge to an optimal solution of the DWM. However, for the case m = 1, when the slow
convergence problem is particularly severe, we found advantage in hot starting π̄ by performing
a number of iterations of a Lagrangean multiplier adjustment method. We have chosen the
Volume algorithm [2] for that purpose. Some remarks on the use of this algorithm:

• It is essential to also use the previously mentioned fixing by reduced costs while performing
the multiplier adjustment iterations. Without the fixing procedure, not only each iteration
of the Volume algorithm takes more time, the algorithm also converges into a significantly
poorer dual solution.

• The parameters in the Volume algorithm were calibrated in order to obtain a fast conver-
gence to a dual solution π̄. As the fixing procedure is used, this solution is usually good.
Using that π̄ to hot start the stabilized column generation is quite effective, convergence
to an optimal solution of the DWM is usually obtained in a few additional iterations.

• Even when the lower bound L(π̄) obtained in the end of the Volume algorithm is very close
to Z∗, in a branch-cut-and-price context it is still very important to perform the stabilized

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 14

column generation. This is because the efficiency of the subsequent cut separation round
requires the correct fractional solution of the DWM. Separating cuts using an approximated
fractional primal solution can lead to the separation of many bad cuts (those that are not
violated by the true DWM solution) and prevent the separation of the good ones. The
approximated primal solutions provided by the Volume algorithm (at least when it is
calibrated for fast convergence) are not good enough for accurate separation.

3.4 Switching to a Branch-and-Cut

The overall algorithm proposed is a branch-cut-and-price, when no more violated cuts are
found or when the last rounds of separation show signs of tailing-off (each cut round only
improves the node bound marginally), a branch (over the arc-time variables x) is performed.
In principle, column and cut generation should be also performed in the child nodes. However,
if the fixing by column generation have reduced a lot the number of x variables, we found
computational advantage in finishing the solution of those nodes using a branch-and-cut over
Formulation (2), restricted to the non-fixed variables, and including all Extended Capacity Cuts
that are active in the current restricted DWM. This means that the column generation is not
performed anymore. Cut generation, using the same separation routines, is still performed.

The threshold (maximum number of non-fixed variables) for switching to a branch-and-cut
was set to 50,000 when m = 1 and to 100,000 when m > 1.

4 Computational Experiments

Following [15, 5], we performed experiments on the set of 375 instances of the classical
1||∑wjTj problem available at the OR-Library. This set was generated by Potts and Wassen-
hove [21] and contains 125 instances for each n ∈ {40, 50, 100}. In fact, for each such n, they
created 5 similar instances (changing the seed) for each of 25 parameter configurations of the
random instance generator. Therefore, for each value of n there are 25 groups composed by 5
similar instances. Those parameter configurations have influence on the distribution of the due
dates. Processing times and weights are always picked from the discrete uniform distribution
on [1,100] and [1,10], respectively.

In order to also perform experiments on the P ||∑wjTj problem, we derived 100 new in-
stances from those OR-Library instances. For m ∈ {2, 4}, n ∈ {40, 50}, we pick the first
1||∑wjTj instance in each group (those with numbers ending with the digit 1 or 6) and divided
each due date dj by m (and rounded down the result), processing times pj and weights wj are
kept unchanged. For example, from instance wt40-1, we produced instances wt40-2m-1 and
wt40-4m-1 by dividing due dates by 2 and 4, respectively.

There is no need of having idle times between consecutive jobs on the same machine in these
tardiness problems. So, we assume that idle times may appear only in the end of the schedule.
For the 1||∑wjTj problem, T is defined as

∑n
j=1 pj . For the P ||∑wjTj problem, we can set

T as b(∑n
j=1 pj − pmax)/mc+ pmax, where pmax is the maximum processing time of a job. This

value of T is valid because if a job i completes after b(∑n
j=1 pj−pi)/mc+pi in a certain machine,

then at least one other machine was available since time b(∑n
j=1 pj − pi)/mc. That job can be

moved to that machine, reducing its completion time.
All our experiments were performed in a notebook with processor Intel Core Duo (but using

a single core) with a clock of 1.66GHz and 2GB of RAM. The linear program solver was CPLEX
11.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 15

4.1 Primal Heuristics

Since the procedure of fixing by reduced costs, essential for the overall performance of the
exact algorithm, requires the value ZINC of a good primal integral solution, we devised and
implemented heuristics for the 1||∑wjTj and P ||∑wjTj problems, combining known ideas
from the literature [10] with a number of new ideas. The description of those heuristics is
available in [23], here we only give information about their performance:

• The heuristics were able to find the optimal solutions for all the 375 OR-Library instances
of the 1||∑wjTj problem. This means that in all such instances the exact algorithm
started with an optimal value of ZINC . The time spent by the heuristics is a small fraction
(always less than 1%) of the time spent by the exact algorithm.

• The heuristics were able to find the optimal solutions for 93 out of the 100 instances of the
P ||∑wjTj problem used in our tests. As the exact algorithm could not solve instances
wt50-2m-31 and wt50-4m-56, we do not know if their heuristical solutions are optimal or
not. The heuristical solutions for instances wt40-2m-81, wt40-2m-116, wt40-4m-81, wt50-
2m-116, and wt50-4m-91 were shown to be suboptimal. In this multi-machine case, the
time spent by the heuristics is also a small fraction (always less than 1%) of the time spent
by the exact algorithm.

4.2 Computational Results on 1||∑ wjTj instances

The first experiment aims at showing the importance of the different techniques introduced
in Section 3 on solving the DWM problem. Table 1 contains averages over 125 instances, for each
n ∈ {40, 50, 100}, of five different methods. Method A is the standard column generation, the
restricted DWM is initialized with 2n artificial columns corresponding to the pseudo-schedules
(1, . . . , i− 1, i + 1, . . . , n) and (1, . . . , i− 1, i, i, i + 1, . . . , n), for all i ∈ J , and a sufficiently large
cost. This initialization is significantly better than using artificial variables forming an identity
matrix or using the columns from the best known integral solution. We do not think that the
column generation on Method A is implemented in a naive way, we did our best to make it work
using the standard techniques used with success in previous works [9, 27, 16]. Anyway, in this
case we report the average time in seconds (Time (s)), average number of iterations (Iter) and
the average integrality gap (Gap %). Since no fixing of variables by reduced costs is performed,
column R.Arcs gives the average original number of variables (arcs) in the arc-time indexed
formulation. Method B is the stabilized column generation described in Section 3.2, initialized
with π̄ = 0. In this case, we also report the average number of changes of the stability center
(St. Chgs) and the average number of misprices (Misprices). Method C is the standard column
generation, without stabilization, but with the fixing by reduced cost described in Section 3.1
performed at every 20 iterations. Column R.Arcs gives the average number of remaining (non-
fixed) arcs in the end of the column generation. Remark that the average integrality gap is
also reduced, since the fixing may cut a fractional DWM solution. Method D is the stabilized
column generation combined with the fixing by reduced costs. The fixing procedure is only
called after an improvement in π̄, but still keeping a minimum interval of 20 iterations between
two consecutive fixings Finally, Method E is the enhancement of Method D obtained by hot-
starting π̄ using the Volume algorithm (see Section 3.3). Note that the fixing by reduced costs
is also called from inside the Volume algorithm. In this case, column Iter gives the average
number of iterations of the overall method, including Volume iterations and stabilized column

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 16

generation iterations. The use of the Volume algorithm not only reduces the average times, it
also reduces the average number of remaining arcs and the average gaps substantially. It seems
that the sequence of improving multipliers π̄ provided along this algorithm are more effective
for the fixing procedure. Methods A, B and C can take a lot of time on some instances with
n = 100, so we could not compute their statistics over those instances.

Table 1: Comparison of different methods for solving the DWM problem.
Method Time (s) Iter Gap % St. Chgs Misprices R.Arcs

A 366.8 819.2 0.0399 − − 1532996
B 54.9 116.5 0.0399 83.1 38.3 1532996

n = 40 C 44.7 322.0 0.0291 − − 30
D 14.5 86.8 0.0224 72.4 32.6 151
E 12.1 71.7 0.0040 1.9 0.9 2.3
A 1545.1 1766.2 0.0660 − − 3007354
B 146.8 160.1 0.0660 95.4 37.4 3007354

n = 50 C 137.8 586.0 0.0557 − − 241
D 35.0 118.7 0.0568 85.4 33.2 562
E 27.6 103.2 0.0249 25.5 5.1 180
D 673.2 337.6 0.0241 146.2 39.5 5246

n = 100 E 386.8 266.8 0.0229 23.4 17.7 4855

Table 2 is a comparison of our complete BCP algorithm with the best algorithm presented
by Pan and Shi [15], over all the 375 OR-Library instances. Their best algorithm is a branch-
and-bound using not only the time indexed bound (computed in a sophisticated way as a trans-
portation problem), but also other combinatorial bounds. We compare the average time to solve
the instance, the maximum time to solve the instance, the average number of nodes in the search
tree, the maximum number of nodes and the average integrality gap. The times reported in [15]
were obtained using a Pentium IV 2.8 GHz processor machine. It can be seen that our algorithm
is a little faster. However, the outstanding difference lies in the root gaps, and therefore, in the
number of nodes of the search tree. In fact, as can be seen by also looking at Table 1, the
integrality gaps obtained by solving the linear relaxation of the arc-time indexed formulation
are already much smaller than those from the time indexed formulation. The addition of the
Extended Capacity Cuts reduces this gap to zero in almost all instances. The branching was
performed in only six instances 1, all of them with n = 100.

Table 3 presents detailed results of the BCP over a sample of 25 instances, those with
numbers ending with the digit 1 or 6, with n = 100. Bigras, Gamache and Savard [5] also chose
to present detailed results on these 25 instances. It should be noted that 4 of these instances are
trivial, in the sense that they have a solution of value 0 that can be easily found by the heuristic
in less than a milisecond (deciding if a 1||∑wjTj instance has a solution of value 0 or not can be
done in polynomial time [19]). Since such solution must be optimal, the BCP is not run on such
cases. The first set of columns give information about the Volume algorithm: the lower bound
obtained, the number of iterations, the running time, and the number of remaining (non-fixed)
arcs in the end of the algorithm. The optimality of 12 of these instances can be proved only

1An additional experiment has shown that a more aggressive separation of Extended Capacity Cuts would
solve all the 375 instances without ever branching, but this more than doubles the running time of the BCP for
some instances with n = 100.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 17

Table 2: Comparison of the complete BCP algorithm with the best algorithm by Pan and Shi
[15].

n Alg. Avg. Time (s) Max Time (s) Avg. Nd Max Nd Avg. Root Gap %
40 [15] 69.0 235 141 293 0.68

BCP 12.1 43.6 1 1 0
50 [15] 142.8 232 416 5623 0.74

BCP 28.1 123.8 1 1 0
100 [15] 1811 32400 18877 > 909844 0.52

BCP 648.5 8508 2.03 42 0.0013

by the Volume lower bound. The next set of columns gives information about the stabilized
column generation used to actually find an optimal solution of the DWM. Again, we report the
DWM lower bound, the number of column generation iterations, the column generation time
and the number of remaining arcs. The third set of columns gives information about the work
performed in the root node of the BCP after cuts start to be added. We report the final root
node bound, the number of cut rounds, the time spent by this part of the code and the number
of remaining arcs. More 10 instances in this sample have their optimality proven still in the root
node. The last two columns are the total number of nodes in the search tree, including nodes
where column generation is not performed (see Section 3.4) and the total running time.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 18
T
ab

le
3:

D
et

ai
le

d
re

su
lt

s
of

th
e

co
m

pl
et

e
B

C
P

al
go

ri
th

m
ov

er
a

sa
m

pl
e

of
25

O
R

-L
ib

ra
ry

in
st

an
ce

s
w

it
h

n
=

10
0.

V
ol

um
e

1s
t.

L
P

R
em

ai
ni

ng
R

oo
t

N
od

e
T
ot

al
In

st
L
B

It
er

T
im

e
R

.A
rc

s
L
B

It
er

T
im

e
R

.A
rc

s
L
B

C
ut

R
T

im
e

R
.A

rc
s

N
d

T
im

e
O

pt
1

59
88

1
77

.3
0

−
−

−
−

−
−

−
−

1
77

.3
59

88
6

58
25

8
19

93
.2

0
−

−
−

−
−

−
−

−
1

93
.2

58
25

8
11

18
16

49
28

13
6.

1
0

−
−

−
−

−
−

−
−

1
13

6.
1

18
16

49
16

40
77

03
16

0
27

9.
9

0
−

−
−

−
−

−
−

−
1

27
9.

9
40

77
03

21
89

89
25

12
5

21
2.

7
0

−
−

−
−

−
−

−
−

1
21

2.
7

89
89

25
26

8
1

69
.4

0
−

−
−

−
−

−
−

−
1

69
.4

8
31

24
20

2
20

90
.2

0
−

−
−

−
−

−
−

−
1

90
.2

24
20

2
36

10
82

93
93

20
9.

3
0

−
−

−
−

−
−

−
−

1
20

9.
3

10
82

93
41

46
21

17
40

1
92

2.
7

13
09

3
46

21
23

22
7

12
0.

1
10

59
6

46
23

24
1

24
.3

0
1

10
67

.1
46

23
24

46
82

97
71

34
0

49
8.

0
15

83
82

97
73

11
5

67
.5

13
75

82
98

28
1

14
.6

0
1

58
0.

1
82

98
28

51
−

−
−

−
−

−
−

−
−

−
−

−
−

0
0

56
90

46
20

76
.6

0
−

−
−

−
−

−
−

−
1

76
.6

90
46

61
86

79
3

22
7

48
0.

4
0

−
−

−
−

−
−

−
−

1
48

0.
4

86
79

3
66

24
36

37
55

5
11

64
.7

33
52

5
24

36
44

38
2

11
9.

3
30

00
2

24
38

22
9

10
88

.1
20

80
7

30
28

07
.0

24
38

72
71

64
07

99
35

1
73

5.
1

11
78

64
08

02
11

3
10

3.
2

77
5

64
08

16
1

16
.0

0
1

85
4.

3
64

08
16

76
−

−
−

−
−

−
−

−
−

−
−

−
−

0
0

81
14

00
30

80
.2

0
−

−
−

−
−

−
−

−
1

80
.2

14
00

86
66

85
0

18
6

46
3.

5
0

−
−

−
−

−
−

−
−

1
46

3.
5

66
85

0
91

24
82

84
40

1
10

27
.7

77
26

0
24

82
93

42
8

15
2.

6
64

42
5

24
86

99
4

30
89

.8
0

1
42

70
.1

24
86

99
96

49
53

58
37

6
91

8.
7

18
85

3
49

53
62

27
5

10
4.

7
15

99
4

49
55

16
2

50
.0

0
1

10
85

.6
49

55
16

10
1

−
−

−
−

−
−

−
−

−
−

−
−

−
0

0
10

6
−

−
−

−
−

−
−

−
−

−
−

−
−

0
0

11
1

15
89

62
45

4
15

54
.2

29
45

7
15

89
68

33
7

14
3.

6
25

65
2

15
91

23
2

13
69

.2
0

1
30

67
.0

15
91

23
11

6
37

04
35

44
5

12
88

.2
40

26
5

37
04

51
35

4
17

6.
4

34
75

4
37

06
14

2
12

50
.3

0
1

27
14

.9
37

06
14

12
1

47
11

66
39

2
95

7.
4

40
24

47
11

75
23

5
14

4.
2

26
26

47
12

14
1

15
.6

0
1

11
17

.2
47

12
14

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 19

4.3 Computational Results on P ||∑ wjTj instances

Table 4 gives statistics on the integrality gaps provided by different methods over each set
of 25 instances, for m ∈ {2, 4}, n ∈ {40, 50}. The first set of columns gives results obtained
by solving the linear relaxation of the time indexed formulation (1) using CPLEX: average
integrality gap (Avg. Gap %), maximum integrality gap (Max Gap %) and average time in
seconds (Time (s)). The second set of columns shows results obtained by solving the DWM
corresponding to the arc-time indexed formulation, the third the results of the same formulation
after the addition of some rounds of Extended Capacity Cuts. It can be seen that, unlike in the
single machine instances, the lower bounds obtained by the arc-time indexed formulation were
not much stronger than the one by the time indexed formulation. By the way, in instance wt40-
2m-81, both methods provided a bound that was more than 20% below the optimal. However,
the Extended Capacity Cuts proved to be very effective in reducing the integrality gap of the
arc-time indexed formulation (these cuts can not be introduced in the time indexed formulation).
This is crucial for the effectivity of the BCP algorithm, most instances from this set can not be
solved without the cuts. We also remark that the column showing the time that CPLEX used
for solving the time indexed formulation was only included in Table 4 for the sake of curiosity.
It is not fair to compare it with the time to solve the arc-time indexed formulation using our
column generation algorithm, since a column generation similar to the one in [5] would probably
be more efficient in obtaining the time indexed bound.

Finally, tables 5 to 8 give detailed results of the complete BCP algorithm over all multi-
machine instances. The columns in these tables are analogous to those in Table 5; excepting
that, since the Volume algorithm is not used, the corresponding columns do not exist. It can
be seen that the BCP algorithm could solve 98 out of 100 instances to optimality. The solved
instance that required more time was wt50-4m-6, it took 48385 seconds.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 20
T
ab

le
4:

C
om

pa
ri

so
n

of
di

ffe
re

nt
bo

un
di

ng
m

et
ho

ds
fo

r
m

ul
ti

-m
ac

hi
ne

in
st

an
ce

s.
T

im
e

in
de

xe
d

R
el

ax
at

io
n

A
rc

-T
im

e
R

el
ax

at
io

n
A

rc
-T

im
e

+
C

ut
s

n
m

A
vg

.
G

ap
%

M
ax

G
ap

%
T

im
e

(s
)

A
vg

.
G

ap
%

M
ax

G
ap

%
T

im
e

(s
)

A
vg

.
G

ap
%

M
ax

G
ap

%
T

im
e

(s
)

40
2

1.
53

3
21

.0
16

85
.6

1.
24

3
20

.8
40

32
.2

0.
05

3
0.

85
3

29
5.

9
4

0.
54

4
4.

78
7

32
.2

0.
40

6
3.

39
0

14
.1

0.
10

5
0.

84
1

63
.9

50
2

0.
53

5
4.

07
4

18
2.

2
0.

48
7

4.
07

4
88

.3
0.

07
8

1.
05

1
22

98
.7

4
0.

52
9

5.
61

4
79

.5
0.

48
9

5.
61

4
36

.8
0.

26
6

5.
08

8
26

2.
5

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 21

T
ab

le
5:

D
et

ai
le

d
re

su
lt

s
of

th
e

co
m

pl
et

e
B

C
P

al
go

ri
th

m
ov

er
th

e
in

st
an

ce
s

w
it

h
m

=
2

an
d

n
=

40
.

1s
t.

L
P

R
em

ai
ni

ng
R

oo
t

N
od

e
T
ot

al
In

st
L
B

It
er

T
im

e
R

.A
rc

s
L
B

C
ut

R
T

im
e

R
.A

rc
s

N
d

T
im

e
O

pt
1

58
4

89
18

.0
15

69
48

60
6

7
32

5.
4

0
1

34
3.

4
60

6
6

38
75

14
1

25
.5

82
83

8
38

86
3

11
9.

6
0

1
14

5.
1

38
86

11
95

92
18

9
34

.5
66

99
9

96
17

2
94

.6
0

1
12

9.
1

96
17

16
38

27
9

29
2

45
.2

59
22

5
38

35
1

2
51

5.
8

59
22

5
3

56
1.

0
38

35
6

21
41

04
8

38
4

37
.1

0
−

−
−

−
1

37
.1

41
04

8
26

87
48

12
.7

0
−

−
−

−
1

12
.7

87
31

37
58

17
2

34
.0

10
62

63
38

12
5

45
2.

0
0

1
48

6.
0

38
12

36
10

66
2

30
3

44
.4

52
81

2
10

70
0

2
11

13
.6

52
81

2
5

11
93

.6
10

71
3

41
30

80
2

38
7

46
.4

0
−

−
−

−
1

46
.4

30
80

2
46

34
14

6
43

0
29

.8
0

−
−

−
−

1
29

.8
34

14
6

51
−

−
−

−
−

−
−

−
−

0
0

56
12

72
80

16
.5

10
70

98
12

79
2

72
.3

0
1

88
.8

12
79

61
11

31
1

26
9

45
.3

72
23

8
11

39
0

2
17

54
.2

72
23

8
32

7
90

97
.3

11
48

8
66

35
13

0
32

3
51

.9
75

49
9

35
19

6
2

15
03

.6
75

49
9

19
6

64
51

.1
35

27
9

71
47

93
5

42
3

42
.9

42
43

0
47

95
2

2
19

.5
0

1
62

.4
47

95
2

76
−

−
−

−
−

−
−

−
−

0
0

81
45

2
15

0
20

.6
71

42
3

57
1

2
94

7.
2

0
1

96
7.

8
57

1
86

59
96

30
2

40
.4

47
82

9
60

41
2

25
3.

5
47

82
9

6
29

8.
0

60
48

91
26

07
5

38
8

56
.6

0
−

−
−

−
1

56
.6

26
07

5
96

66
11

0
35

8
50

.9
46

48
1

66
11

6
2

2.
9

0
1

53
.8

66
11

6
10

1
−

−
−

−
−

−
−

−
−

0
0

10
6

−
−

−
−

−
−

−
−

−
0

0
11

1
17

89
8

29
2

50
.0

51
88

4
17

93
6

2
46

.5
0

1
96

.5
17

93
6

11
6

25
78

6
31

7
50

.4
54

57
4

25
87

0
2

17
3.

7
0

1
22

4.
1

25
87

0
12

1
64

50
7

39
0

50
.9

48
15

2
64

51
6

2
3.

0
0

1
53

.9
64

51
6

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 22
T
ab

le
6:

D
et

ai
le

d
re

su
lt

s
of

th
e

co
m

pl
et

e
B

C
P

al
go

ri
th

m
ov

er
th

e
in

st
an

ce
s

w
it

h
m

=
4

an
d

n
=

40
.

1s
t.

L
P

R
em

ai
ni

ng
R

oo
t

N
od

e
T
ot

al
In

st
L
B

It
er

T
im

e
R

.A
rc

s
L
B

C
ut

R
T

im
e

R
.A

rc
s

N
d

T
im

e
O

pt
1

43
8

65
9.

8
73

22
7

43
9

2
25

.1
0

1
34

.9
43

9
6

23
72

10
8

12
.7

30
94

6
23

74
2

6.
7

0
1

19
.4

23
74

11
57

35
15

7
18

.1
30

10
0

57
37

2
4.

4
0

1
22

.5
57

37
16

21
48

4
18

4
19

.0
26

70
3

21
49

3
2

1.
6

0
1

20
.6

21
49

3
21

22
79

3
24

8
18

.4
0

−
−

−
−

1
18

.4
22

79
3

26
88

37
6.

3
0

−
−

−
−

1
6.

3
88

31
24

96
10

6
15

.4
51

52
8

25
11

2
60

0.
5

51
52

8
22

27
02

.4
25

25
36

63
55

21
4

21
.4

37
54

3
63

66
2

12
1.

7
37

54
3

28
75

15
72

7.
4

64
20

41
17

63
4

18
5

20
.9

38
06

2
17

64
2

2
91

.0
38

06
2

12
9

67
3.

3
17

68
5

46
19

12
4

18
6

12
.8

0
−

−
−

−
1

12
.8

19
12

4
51

−
−

−
−

−
−

−
−

−
0

0
56

79
8

64
9.

4
76

07
5

82
6

2
48

6.
0

0
1

49
5.

4
82

6
61

73
16

17
0

19
.8

32
93

4
73

21
2

68
.9

32
93

4
49

0
17

11
.7

73
57

66
20

24
7

22
7

21
.8

25
04

1
20

25
1

2
0.

8
0

1
22

.6
20

25
1

71
26

74
0

17
9

15
.4

0
−

−
−

−
1

15
.4

26
74

0
76

−
−

−
−

−
−

−
−

−
0

0
81

55
0

10
6

10
.6

27
39

9
56

4
2

16
.2

0
1

26
.8

56
4

86
47

19
17

8
17

.3
22

97
1

47
25

2
0.

6
0

1
17

.9
47

25
91

15
55

7
21

1
23

.8
25

52
5

15
56

9
2

8.
2

0
1

32
.0

15
56

9
96

36
26

6
15

9
18

.6
0

−
−

−
−

1
18

.6
36

26
6

10
1

−
−

−
−

−
−

−
−

−
0

0
10

6
−

−
−

−
−

−
−

−
−

0
0

11
1

11
21

2
14

7
19

.3
35

24
5

11
22

5
2

71
.0

35
24

5
12

6
44

2.
9

11
26

3
11

6
15

53
9

17
5

20
.7

28
34

0
15

54
5

2
59

.2
28

34
0

93
16

4.
6

15
56

6
12

1
35

73
9

19
8

20
.6

29
01

2
35

74
2

2
35

.8
29

01
2

19
68

.2
35

75
1

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 23
T
ab

le
7:

D
et

ai
le

d
re

su
lt

s
of

th
e

co
m

pl
et

e
B

C
P

al
go

ri
th

m
ov

er
th

e
in

st
an

ce
s

w
it

h
m

=
2

an
d

n
=

50
.

1s
t.

L
P

R
em

ai
ni

ng
R

oo
t

N
od

e
T
ot

al
In

st
L
B

It
er

T
im

e
R

.A
rc

s
L
B

C
ut

R
T

im
e

R
.A

rc
s

N
d

T
im

e
O

pt
1

12
32

11
0

46
.1

35
90

70
12

68
6

63
4.

1
0

1
68

0.
2

12
68

6
14

26
1

26
3

96
.1

14
90

62
14

26
9

17
34

89
3.

7
14

27
41

4
34

98
9.

8
14

27
2

11
23

00
0

39
1

10
7

97
81

3
23

02
8

6
48

8.
2

0
1

59
5.

2
23

02
8

16
46

01
1

50
6

11
1

81
43

2
46

07
2

5
15

7.
5

0
1

26
8.

5
46

07
2

21
11

10
67

71
1

10
9.

7
72

34
8

11
10

69
2

13
.1

0
1

12
2.

8
11

10
69

26
26

61
25

.7
0

−
−

−
−

1
25

.7
26

31
52

89
26

5
90

.5
22

95
66

53
48

15
78

06
.9

19
73

07
−

−
≤

53
78

36
18

89
5

40
1

11
5.

3
95

68
9

18
95

6
10

65
6.

9
0

1
77

2.
2

18
95

6
41

37
96

8
46

6
11

8.
2

96
73

9
38

05
8

5
18

6.
7

0
1

30
4.

9
38

05
8

46
82

08
7

59
6

10
7

79
93

6
82

10
5

6
10

0.
1

0
1

20
7.

1
82

10
5

51
−

−
−

−
−

−
−

−
−

0
0

56
73

0
11

4
38

.1
26

49
65

75
9

11
10

02
.3

23
20

73
1

10
40

.4
76

1
61

13
58

9
40

3
12

5.
1

10
40

20
13

62
8

20
49

08
.9

99
99

0
74

12
32

3.
7

13
68

2
66

40
90

4
49

8
10

0.
7

54
00

8
40

90
7

2
4.

0
0

1
10

4.
7

40
90

7
71

78
53

2
63

7
13

3.
8

0
−

−
−

−
1

13
3.

8
78

53
2

76
−

−
−

−
−

−
−

−
−

0
0

81
53

8
11

5
37

.9
18

40
60

54
2

1
10

3.
0

0
1

14
0.

9
54

2
86

12
27

7
52

0
13

7.
2

10
68

11
12

42
5

15
26

66
.3

99
29

6
12

58
30

74
2.

6
12

55
7

91
47

29
4

57
3

15
5.

2
94

35
3

47
32

8
17

10
83

.4
94

35
3

20
14

25
47

34
9

96
92

80
3

60
3

15
2.

6
77

18
2

92
82

2
4

51
.7

0
1

20
4.

3
92

82
2

10
1

−
−

−
−

−
−

−
−

−
0

0
10

6
−

−
−

−
−

−
−

−
−

0
0

11
1

15
54

4
51

4
12

8.
3

74
02

7
15

56
4

4
44

.8
0

1
17

3.
2

15
56

4
11

6
19

52
4

52
2

13
2.

2
85

78
3

19
57

4
22

26
65

.9
85

78
3

15
1

98
77

19
60

8
12

1
41

69
6

72
5

13
8.

9
0

−
−

−
−

1
13

8.
9

41
69

6

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 24
T
ab

le
8:

D
et

ai
le

d
re

su
lt

s
of

th
e

co
m

pl
et

e
B

C
P

al
go

ri
th

m
ov

er
th

e
in

st
an

ce
s

w
it

h
m

=
4

an
d

n
=

50
.

1s
t.

L
P

R
em

ai
ni

ng
R

oo
t

N
od

e
T
ot

al
In

st
L
B

It
er

T
im

e
R

.A
rc

s
L
B

C
ut

R
T

im
e

R
.A

rc
s

N
d

T
im

e
O

pt
1

77
7

85
27

.0
23

82
83

78
5

2
62

.5
0

1
89

.5
78

5
6

82
98

15
0

42
.9

87
15

8
83

09
12

26
80

.2
87

15
8

95
48

38
5.

6
83

17
11

12
87

1
19

5
40

.8
52

18
3

12
87

5
10

37
2.

4
52

18
3

8
48

4.
4

12
87

9
16

25
37

5
27

7
45

.2
34

52
8

25
37

6
2

1.
0

0
1

46
.2

25
37

6
21

59
44

0
35

2
46

.1
0

−
−

−
−

1
46

.1
59

44
0

26
54

52
13

.8
0

−
−

−
−

1
13

.8
54

31
30

61
16

3
39

.6
0

−
−

−
−

1
39

.6
30

61
36

10
79

4
32

1
53

.8
38

68
1

10
79

6
2

1.
4

0
1

55
.2

10
79

6
41

21
78

3
31

2
57

.3
50

83
6

21
78

7
10

13
6.

2
50

83
6

69
84

5.
1

21
80

6
46

44
45

2
30

4
46

.1
38

59
1

44
45

5
2

1.
6

0
1

47
.7

44
45

5
51

−
−

−
−

−
−

−
−

−
0

0
56

53
8

85
18

.7
18

26
59

54
1

5
22

06
.0

18
13

33
–

–
≤

57
0

61
78

50
30

0
59

.3
57

02
5

78
58

10
30

5.
3

57
02

5
27

20
43

64
5.

9
78

98
66

23
13

8
32

9
45

.9
0

−
−

−
−

1
45

.9
23

13
8

71
42

62
5

28
3

49
.6

50
11

7
42

62
9

9
18

6.
9

50
11

7
27

32
8.

1
42

64
5

76
−

−
−

−
−

−
−

−
−

0
0

81
47

8
84

17
.8

12
51

05
49

5
3

93
.4

0
1

11
1.

2
49

5
86

83
30

24
2

47
.1

41
75

7
83

35
10

81
.8

41
75

7
58

27
4

83
69

91
26

54
6

33
9

61
.0

40
88

2
26

55
1

3
2.

8
0

1
63

.8
26

55
1

96
50

31
2

25
8

51
.9

44
55

9
50

31
7

10
11

7.
0

44
55

9
43

24
6.

9
50

32
6

10
1

−
−

−
−

−
−

−
−

−
0

0
10

6
−

−
−

−
−

−
−

−
−

0
0

11
1

10
04

9
26

7
52

.1
41

32
5

10
05

3
8

71
.9

41
32

5
36

13
9.

7
10

06
9

11
6

11
52

0
32

1
54

.8
46

91
2

11
52

3
9

15
2.

3
46

91
2

33
15

18
27

7.
5

11
55

2
12

1
23

76
9

28
1

48
.2

45
56

0
23

77
5

9
90

.5
45

56
0

17
9

89
8.

8
23

79
2

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 25

5 Conclusions

This paper presented a set of algorithms, bundled into a branch-cut-and-price code, for some
important scheduling problems. Very good experimental results are shown. The 1||∑wjTj

instances that just a few years ago were considered as untractable can now be solved quickly
and almost without any branching. Instances of the P ||∑wjTj problem of reasonable size can
also be solved. The paper original contributions include:

• An arc-time indexed formulation for scheduling problems that is shown to be significantly
stronger than the time indexed formulation, specially for the single-machine case.

• A procedure to fix variables by reduced costs that can be applied on any column generation
or Lagrangean relaxation algorithm where the subproblem has a path structure. As already
mentioned, a similar procedure was independently proposed in [11]. It is experimentally
shown that this procedure is crucial for working with the arc-time indexed formulation.

• A very simple, effective and theoretically sound dual stabilization procedure. This proce-
dure is general and can be used on any column generation algorithm.

Acknowledgements. AP, EU and MPA received support from CNPq grants 301175/06-3,
304533/02-5, and 300475/93-4, respectively. RR was supported by grant PICDT/CAPES.

References

[1] P. Avella, M. Boccia, and B. D’Auria. Near-optimal solutions of large scale single-machine
scheduling problems. ORSA Journal on Computing, 17:183–191, 2005.

[2] F. Barahona and R. Anbil. The volume algorithm: producing primal solutions with a
subgradient algorithm. Mathematical Programming, 87:385–399, 1999.

[3] H. Ben Amor, A. Frangioni, and J. Desrosiers. On the choice of explicit stabilizing terms
in column generation. Technical Report G-2007-109, GERAD, Montreal, December 2007.

[4] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
1997.

[5] L. Bigras, M. Gamache, and G. Savard. Time-indexed formulations and the total weighted
tardiness problem. INFORMS Journal on Computing, 1:133–142, 2008.

[6] S. Dash, R. Fukasawa, and O. Gunluk. On the generalized master knapsack polyhedron.
In Proceedings of the 12th IPCO Conference, volume 4513 of Lecture Notes in Computer
Science, pages 197–209, 2007.

[7] du Merle, O. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation. Dis-
crete Mathematics, 194:229–237, 1999.

[8] M. Dyer and L. Wolsey. Formulating the single machine sequencing problem with release
dates as a mixed integer program. Discrete Applied Mathematics, 26:255–270, 1990.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 26

[9] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, and R. F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106:491–511, 2006.

[10] A. Grosso, F. Della Croce, and R. Tadei. An enhanced dynasearch neighborhood for the
single-machine total weighted tardiness scheduling problem. Operations Research Letters,
32:68–72, 2004.

[11] S. Irnich, G. Desaulniers, J. Desrosiers, and A. Hadjar. Path reduced costs for eliminating
arcs. Technical Report G-2007-83, GERAD, Montreal, November 2007.

[12] E. Lawler. A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness.
Annals of Research Letters, 1:207–208, 1977.

[13] C. Lemaréchal. Lagrangean relaxation. In M. Juenger and D. Naddef, editors, Computa-
tional Combinatorial Optimization, pages 115–160. Springer, 2001.

[14] A. Oukil, H. Ben Amor, , J. Desrosiers, and H. El Gueddari. Stabilized column generation
for highly degenerate multiple-depot vehicle scheduling problems. Computers & Operations
Research, 34:817–834, 2007.

[15] Y. Pan and L. Shi. On the equivalence of the max-min transportation lower bound and the
time-indexed lower bound for single machine scheduling problems. Mathematical Program-
ming, 110:543–559, 2007.

[16] A. Pessoa, M. Poggi de Aragão, and E. Uchoa. Robust branch-cut-and-price algorithms for
vehicle routing problems. In B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle
Routing Problem: Latest Advances and New Challenges, pages 297–326. Springer, 2008.

[17] A. Pessoa, E. Uchoa, and M. Poggi de Aragão. A robust branch-cut-and-price algorithm
for the heterogeneous fleet vehicle routing problem. Networks, 2008. To appear.

[18] J. Picard and M. Queyranne. The time-dependant traveling salesman problem and its
application to the tardiness problem in one-machine scheduling. Operations Research, 26:86–
110, 1978.

[19] M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice-Hall, 2002.

[20] M. Poggi de Aragão and E. Uchoa. Integer program reformulation for robust branch-and-
cut-and-price. In L. Wolsey, editor, Annals of Mathematical Programming in Rio, pages
56–61, Búzios, Brazil, 2003.

[21] C. Potts and L. Wassenhove. A branch-and-bound algorithm for the total weighted tardiness
problem. Operations Research, 32:363–377, 1985.

[22] M. Queyranne and A. Schulz. Polyhedral approaches to machine scheduling. Technical
Report 408, University of Berlin, 1997.

[23] R. Rodrigues, A. Pessoa, E. Uchoa, and M. Poggi de Aragão. Heuristics for single and multi-
machine weighted tardiness problems. Technical Report RPEP Vol.8 no.11, Universidade
Federal Fluminense, Engenharia de Produção, Niterói, Brazil, 2008.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

Relatórios de Pesquisa em Engenharia de Produção V. 8 n. 8 27

[24] R. Sadykov. Integer Programming-based Decomposition Approaches for Solving Machine
Scheduling Problems. PhD thesis, Universite Catholique de Louvain, 2006.

[25] J. Sousa and L. Wolsey. A time indexed formulation of non-preemptive single machine
scheduling problems. Mathematical Programming, 54:353–367, 1990.

[26] E. Uchoa. Robust branch-and-cut-and-price for the CMST problem and extended ca-
pacity cuts. Presentation in the MIP 2005 Workshop, Minneapolis, 2005. Avail-
able at http://www.ima.umn.edu/matter/W7.25-29.05/activities/Uchoa-Eduardo/cmst-
ecc-IMA.pdf.

[27] E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M. Poggi de Aragão, and D. Andrade.
Robust branch-cut-and-price for the capacitated minimum spanning tree problem over a
large extended formulation. Mathematical Programming, 122:443–472, 2008.

[28] J. Van der Akker, C. Hurkens, and M. Savelsbergh. Time-indexed formulations for machine
scheduling problems: Column generation. INFORMS Journal on Computing, 12(2):111–
124, 2000.

[29] J. Van der Akker, C. Van Hoesel, and M. Savelsbergh. A polyhedral approach to single-
machine scheduling problems. Mathematical Programming, 85:541–572, 1999.

Versão Final Recebida em 21/06/08 - Publicado em 24/09/08

