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legouveia@fc.ul.pt

Luidi Simonetti

PESC/COPPE – Universidade Federal do Rio de Janeiro
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Abstract

The Hop-Constrained Minimum Spanning Tree Problem (HMSTP)
arises in the design of centralized telecommunication networks with qual-
ity of service constraints. We show that the HMSTP is equivalent to a
Steiner Tree Problem (STP) in an adequate layered graph. We prove that
the directed cut formulation for the STP defined in the layered graph,
dominates the best previously known formulations for the HMSTP. We
then show how cuts in the extended layered graph space can be projected
into new families of cuts in the original design space. We also adapt
the proposed approach for the Diameter-Constrained Minimum Spanning
Tree Problem (DMSTP). Computational results with a branch-and-cut
algorithm show that the proposed method is significantly better than pre-
viously known methods on both problems.

Keywords: Networks/Graphs: tree algorithms, Integer Programming:
formulations, cutting planes

Resumo

O Problema da Árvore Geradora Mı́nima com Restrições de Salto
(HMST) surge no projeto de redes de comunicação centralizadas com re-
strições de qualidade de serviço. Mostramos que o HMST é equivalente
a um Problema da Árvore de Steiner (STP) sobre um grafo em camadas
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adequado. Provamos que a formulação de cortes direcionados para o STP
aplicada ao grafo de camadas domina as melhores formulações conheci-
das para o HMST. Também mostramos que cortes definidos sobre o grafo
em camadas podem ser projetadas em novas famı́lias de cortes no espaço
de variáveis original. A abordagem também pode ser adaptada para o
O Problema da Árvore Geradora Mı́nima com Restrições de Diâmetro
(DMST). Os resultados computacionais obtidos em ambos os problemas
são significativamente melhores do que os obtidos com outros métodos
conhecidos.

Palavras-Chave: Redes/Grafos: algoritmos para árvores, Programação
Inteira: formulações, planos de corte

1 Introduction

The Hop-constrained Minimum Spanning Tree Problem (HMSTP) is defined
as follows: given a graph G = (V, E) with node set V = {0, 1, . . . , n} and edge
set E as well as a positive cost ce associated with each edge e of E and a natural
number H , we wish to find a spanning tree T of the graph with minimum total
cost and such that the unique path from a specified root node, node 0, to any
other node has no more than H hops (edges).

The HMSTP is NP-hard because it contains as a particular case (the case
with H = 2) a NP-Hard version of the Simple Uncapacitated Facility Location
problem (see [11, 4]). [28] have shown that the HMSTP is not in APX, i.e.,
the class of problems for which it is possible to have polynomial time heuristics
with a constant-factor approximation bound. The HMSTP models the design
of centralized telecommunication networks with quality of service constraints.
The root node represents the site of a central processor and the remaining nodes
represent terminals that are required to be linked to the central processor. The
hop constraints guarantee a certain level of service with respect to some perfor-
mance constraints such as availability and reliability (see [39]). Availability is
the probability that all the transmission lines in the path from the root node
to the terminal are working. Reliability is the probability that a session will
not be interrupted by a link failure. These probabilities decrease with the num-
ber of links in the path, implying that paths with fewer hops have a better
performance. Centralized terminal networks are also usually implemented with
multidrop lines for connecting the terminals with the center. In such networks,
node processing times dominate over link delays and fewer hops mean, in gen-
eral, lower delays.

Lower bounding schemes for the HMSTP based on network-flow models have
been suggested in [12, 14], and [19]. More recently, [6] propose a formulation
involving only natural design variables and an exponential sized set of so-called
“jump” constraints and propose a lower bound based on an appropriate La-
grangean relaxation. The recent survey by [8] summarizes these approaches.
The reader is also referred to [22] for a survey of several network design prob-
lems with hop constraints and methods to solve them.
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The models described in the previous papers view the HMSTP problem as
defined in the original graph (although some extended models also use variables
corresponding to arcs in auxiliary layered graphs associated to hop-constrained
shortest path problems, one for each non-root node). In this paper we propose
a modelling approach for the HMSTP that views the whole problem as defined
in a single layered graph. We will show that the HMSTP is equivalent to a
Steiner tree problem (see, for instance, [26, 21]) in the layered graph. Thus,
any known formulation for this problem can be used to solve the HMSTP. Our
computational results are taken from an adaptation of the efficient branch-and-
cut method proposed in [31], and which is based on the well known directed
cut formulation for the Steiner tree problem. We will also show that the linear
programming relaxation bounds of the directed cut formulation defined in the
layered graph are at least as good (strictly better for several instances) than the
linear programming bounds of best HMST formulations presented so far.

[8] have shown that for H = 3, the linear programming feasible set of the
formulation used in [6] equals the projection of the linear programming feasible
set of the extended formulation given in [14] into the design variable subspace.
They have also shown that obtaining a similar equivalence result for H ≥ 4
would prove to be much more complicated. Since our new formulation dominates
Gouveia’s formulation, even for H = 3, it is interesting to have some insight
of what inequalities are implied by the linear programming relaxation of the
new formulation that are not redundant in the linear programming relaxation
of the older one. We provide a technique for combining inequalities from the
new formulation in a such a way that they can be projected into new families
of cuts in the original design space.

The methods provided in this paper can be easily adapted for the HMSTP
variant where the hop constraint H(i) depends on the node. This variant is
useful on telecommunication network design applications where more important
nodes need to be closer to the central node.

A related problem, the so-called Diameter-constrained Minimum Spanning
Tree Problem (DMSTP) is defined as follows: given a graph G = (V, E) with
node set V = {1, . . . , n} and edge set E as well as a positive cost ce associated
with each edge e of E and a natural number D, we wish to find a spanning tree
T of the graph with minimum total cost and such that the unique path from
any node i to any node j has no more than D hops (edges). Note that in this
variation, we constrain the path between each pair of nodes while in the previous
one, only the paths from the special node are constrained. Several approaches
for the DMSTP (see, for instance, [1, 16, 33, 20]) have used the properties of tree
centers in order to transform the DMSTP into special versions of the HMSTP.
In a similar way, here we adapt the new HMTSP method for the DMSTP.
Although the adaptation given for the situations with even diameter is taken
straightforwardly from the literature, we propose a new transformation for the
odd diameter case that permits us to make efficient use of the layered graph
approach.

Although the HMSTP and the DMSTP have symmetric edge costs, we will
focus our presentation on so-called directed formulations. It is known that
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directed formulations lead, in general, to models with a tighter linear program-
ming bound (see, for instance [27]). To view the HMSTP as a directed one, we
consider the problem of finding a minimum cost arborescence rooted away from
node 0. To define the directed models we consider the problem redefined in a
directed graph G = (V, A) and such that for each edge (i, j) in E, we have two
arcs (i, j) and (j, i) in A with the same cost as the original edge. With respect
to edges (0, j) we consider only a single arc (0, j). A similar construct will be
done for the DMSTP, since in the proposed approaches, a dummy central node
is created and we can see the tree as directed away from it. The proposed trans-
formation can be easily adapted for the Diameter-constrained Minimum Steiner
Tree Problem, where only a subset of the nodes, the required nodes, need to be
connected by a tree respecting a diameter constraint.

The remainder of the paper is as follows. In Section 2 we describe the layered
graph and the transformation of the HMSTP into a Steiner tree problem in the
layered graph. In Section 3 we rewrite some of the well known formulations
for the Steiner tree problem in the context of the layered graph. In Section 4
we make a brief survey of the formulations with the best linear programming
bound presented in the literature and compare their linear programming bounds
with the linear programming relaxation bounds of the new formulations. This
section also presents new inequalities in the design space that are implied by
the new formulations. In Section 5 we review the STP branch-and-cut method
described in [31]. In Section 6 we describe an adaptation of the transformation
and method for the related DMSTP, for both even or odd diameters. The
computational experiments are given in Section 7.

2 Transforming the HMSTP into a Steiner Tree

Problem in a Layered Graph

In this section we show how to transform the HMSTP into a Steiner tree
problem in a layered graph. Consider a graph GL = (VL, AL) defined as follows:

VL = {0} ∪ {(i, h) : 1 ≤ h ≤ H and i ∈ V \ {0}} and

AL = A0 ∪ A1 ∪ A2 where

A0 = {((0), (j, 1)) : (0, j) ∈ A},

A1 = {((i, h), (j, h + 1)) : (i, j) ∈ A, i 6= 0, 1 ≤ h ≤ H − 1} and

A2 = {((i, h), (i, H)) : i ∈ V \ {0}, 1 ≤ h ≤ H − 1}.

The required node set R is defined as the set {(i, H) : i ∈ V \{0}}. The cost
of the arcs in the sets A0 and A1 are equal to the costs of the corresponding arcs
in the original graph and the cost of arcs in A2 is equal to 0. Note that GL is
built by levels with the nodes of the original graph replicated H times. A node
(i, h) in the layered graph is associated to node i being in depth h in the original
graph (i.e., the path from node 0 to node i contains h arcs). Figure 1 illustrates
on its right-hand side the layered graph corresponding to the graph shown on
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the left-hand side, for an instance with H = 3. The root node is depicted as a
triangle, nodes of R are depicted as squares, the arcs in A2 are dashed.
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(1,3) (2,3) (3,3) (4,3) (5,3)

Figure 1: Layered Graph Transformation: original graph of an instance with
H = 3 on the left-hand side and the corresponding layered graph on the right-
hand side.

Consider the arcs in a minimum cost Steiner tree in GL. Removing the arcs
in A2 and ignoring the indices h of the remaining arcs, one obtains a spanning
tree with depth less or equal than H in the original graph and with the same
cost. Conversely, every hop constrained spanning tree in the original graph
corresponds to a Steiner tree with the same cost in the layered graph. One
example of such pair of solutions is given in Figure 2.
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Figure 2: Optimal HMST in the original graph (cost 16) and its corresponding
Steiner tree in GL (H = 3)
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3 The Formulations

The advantage of using the transformation described in the previous section
is that by associating binary variables to each arc in the layered graph, we
can use any model for the Steiner tree problem to provide a valid model for
the HMSTP. More precisely, we define the following binary variables: (i) X1

0j

for each arc (0, (j, 1)) in A0, (ii) Xh
ij for each arc ((i, h − 1), (j, h)) in A1, and

(iii) Xh
jj to each arc ((j, h − 1), (j, H)) in A2. In the next two subsections we

present three such models. The first one is an adaptation for the layered graph
of the well known directed cut formulation given in [26] (see also [2]) for the
Steiner tree problem. This model will be used in our computations. The second
one is an equivalent (in the sense that the two models provide the same linear
programming bound) network flow model (it can also be seen as [38] directed
flow model adapted for the layered graph) and the third one is a simplified
version of the previous one. The simplified network flow model will help us to
relate the new models with other models presented in the literature.

3.1 The Directed Cut Model

Before introducing the cut model, we introduce some notation for describing
some inequalities on the layered graph. Let [VL \S, S] denote a cut in the graph
such that 0 /∈ S and S ∩R 6= {∅} and let X [VL \S, S] denote the sum of the Xh

ij

variables associated to arcs on that cut. The following model is nothing else
than the directed cut Steiner model rewritten for the layered graph:

Model Hop-Cut

min
∑

j:(0,j)∈A

c0jX
1
0j +

∑

(i,j)∈A,i6=0

cij

H∑

h=2

Xh
ij (1)

s.t.
∑

i:(i,j)∈A

XH
ij +

H∑

h=2

Xh
jj = 1, j ∈ V \ {0} (2)

X [VL \ S, S] ≥ 1, S ∩ R 6= {∅}; 0 /∈ S (3)

X1
0j ∈ {0, 1}, (0, j) ∈ A (4)

Xh
ij ∈ {0, 1}, (i, j) ∈ A; i 6= 0; h = 2, . . . , H(5)

Xh
jj ∈ {0, 1}, j ∈ V \ {0}; h = 2, . . . , H (6)

Constraints (2) guarantee that each required node is visited once. Con-
straints (3) are directed cut constraints and state that if some required nodes
are in S, then any feasible solution for the problem must contain one arc, at
least, in the cut [VL \ S, S]. Note that when |S ∩ R| = 1, constraints (3) are
dominated by (2). However, when the arc costs are positive (as is the case of
the problem studied here) we can omit constraints (2) as any optimal solution
would satisfy these constraints as equalities. The formulation given above con-
tains an exponential sized set of constraints (constraints (3)). However, they
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can be efficiently separated in polynomial time (see Section 5).
We note that formulations for the HMSTP using similar variables have been

proposed before. In fact, the formulation presented in [13] for the HMSTP can
be seen as specialized case of the [23] formulation for the Steiner tree problem
defined in the layered graph. Gouveia’s formulation uses so-called hop-ordering
inequalities that are a hop-indexed version of a set of “connectivity” constraints
proposed in the formulation by [23]. More recently, [3] have used use a simi-
lar formulation augmented with valid inequalities for a variation of the Steiner
tree problem with Profits. An example from a different problem is taken from
the hop-indexed formulation given in [18] for the capacitated minimum span-
ning tree. This formulation can be seen as a straightforward capacitated single
commodity flow formulation defined in the layered graph. This layered graph
construct has also been used for a weighted version of the HMSTP in [25]. This
problem differs from the HMSTP in the sense that “distance” weights are at-
tached to the arcs and the constraint requires that the sum of the arc weights on
all paths from the root node do not exceed a given amount H . Finally, this brief
survey on layered graph based models would not be complete without mention-
ing a few similar approaches on routing problems. Among them, we refer the
well known formulation for the time dependent travelling salesman problem by
[30] and which may be considered the first work using such a layered approach
and a more recent approach by [10] for the Capacitated Vehicle Routing Prob-
lem, where the emphasis is on finding inequalities projected on the space of flow
based formulations.

3.2 The Directed Network Flow Model

In order to compare the proposed formulation with others proposed in the
literature, we follow the literature (see, for instance [26, 27]) and rewrite con-
straints (3) in a compact way by using network flows. For each k ∈ V \ {0},
we consider flow binary variables yhk

ij indicating whether arc (i, j) is in position
h in the path to node k in the original graph (or alternatively, whether arc
((i, h−1), (j, h)) of GL is in the path to node k in the Steiner tree solution) and
variables yhk

kk indicating whether node k is in position h − 1 (or alternatively,
whether arc ((k, h − 1), (k, H)) of GL is in position h in the path to node k in
the Steiner tree solution). Consider the following set of constraints.

∑

j∈V \{0}

y1k
0j = 1, k ∈ V \ {0} (7)

y1k
0i −

∑

j∈V \{0,i}

y2k
ij = 0, i, k ∈ V \ {0}; i 6= k (8)

y1k
0k − y2k

kk = 0, k ∈ V \ {0} (9)
∑

j∈V \{0,i,k}

yhk
ji −

∑

j∈V \{0,i}

y
(h+1)k
ij = 0, i, k ∈ V \ {0}; i 6= k; h = 2, . . . , H − 1 (10)

∑

j∈V \{0,k}

yhk
jk − y

(h+1)k
kk = 0, k ∈ V \ {0}; h = 2, . . . , H − 1 (11)
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∑

j∈V \{0,k}

yHk
jk +

H∑

h=2

yhk
kk = 1, k ∈ V \ {0} (12)

y1k
0j ≥ 0, (0, j) ∈ A; k ∈ V \ {0} (13)

yhk
ij ≥ 0, (i, j) ∈ A; i 6= 0; k ∈ V \ {0}; i 6= k; h = 2, . . . , H(14)

yhj
jj ≥ 0, j ∈ V \ {0}; h = 2, . . . , H. (15)

If we replace in the model Hop-Cut (3), these constraints together with the
linking constraints

y1k
0j ≤ X1

0j , (0, j) ∈ A; k ∈ V \ {0} (16)

yhk
ij ≤ Xh

ij , (i, j) ∈ A; i 6= 0; k ∈ V \ {0}; i 6= k; h = 2, . . . , H (17)

yhj
jj ≤ Xh

jj , j ∈ V \ {0}; h = 2, . . . , H (18)

we obtain another valid formulation for the HMSTP, denoted by Hop-NF in the
remainder of the paper. Note that this formulation is nothing else than the well
known directed network flow formulation for the Steiner tree problem defined
in the layered graph (see again, [26, 27]). A simple application of the max
cut/min flow theorem shows that the linear programming bound of the Hop-NF
formulation equals the linear programming bound of the Hop-Cut formulation.

3.3 The Revised Directed Network Flow Model

Before comparing the linear programming relaxation of the new formula-
tions with the linear programming relaxation of other formulations presented
in the literature, we simplify the previous formulation. First, we observe that
constraints (9) and (11) permit us to eliminate the variables yhj

jj . Thus, the
equalities (9), (11) and (15) can be removed from the model, constraints (12)
become

H∑

h=2

∑

j∈V \{0,k}

yhk
jk + y1k

0k = 1, k ∈ V \ {0} (19)

(20)

and constraints (18) become

y1k
0j ≤ X2

jj , j ∈ V \ {0} (21)
∑

i∈V \{0,j}

y
(h−1)j
ij ≤ Xh

jj , j ∈ V \ {0}; h = 3, . . . , H. (22)

Second, we observe that in the linear programming relaxation of the Hop-
NF formulation, constraints (16), (17) when j = k and constraints (18) are
satisfied as equalities (and thus, the same happens with constraints (21) and
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(22)). Combining these equalities gives

X1
0j = X2

jj , j ∈ V \ {0} (23)
∑

i∈V \{0,j}

Xh−1
ij = Xh

jj , j ∈ V \ {0}; h = 3, . . . , H (24)

permitting us to eliminate the variables Xh
jj . Then, constraints (2) become:

H∑

h=2

∑

i∈V \{0,j}

Xh
ij + X1

0j = 1, j ∈ V \ {0} (25)

We present next the Revised Hop-NF formulation after performing these
simplifications.
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Model Revised Hop-NF

min
∑

j:(0,j)∈A

c0jX
1
0j +

∑

(i,j)∈A,i6=0

cij

H∑

h=2

Xh
ij (26)

s.t.

H∑

h=2

∑

i∈V \{0,j}

Xh
ij + X1

0j = 1, j ∈ V \ {0} (27)

∑

j∈V \{0}

y1k
0j = 1, k ∈ V \ {0} (28)

y1k
0i −

∑

j∈V \{0,i}

y2k
ij = 0, i, k ∈ V \ {0}; i 6= k (29)

∑

j∈V \{0,i,k}

yhk
ji −

∑

j∈V \{0,i}

y
(h+1)k
ij = 0, i, k ∈ V \ {0}; i 6= k; h = 2, . . . , H − 1(30)

H∑

h=2

∑

j∈V \{0,k}

yhk
jk + y1k

0k = 1, k ∈ V \ {0} (31)

y1k
0j ≤ X1

0j , (0, j) ∈ A; k ∈ V \ {0} (32)

yhk
ij ≤ Xh

ij , (i, j) ∈ A; i 6= 0; k ∈ V \ {0}; h = 2, . . . , H(33)

y1k
0j ≥ 0, (0, j) ∈ A; k ∈ V \ {0} (34)

yhk
ij ≥ 0, (i, j) ∈ A; i 6= 0; k ∈ V \ {0}; h = 2, . . . , H(35)

X1
0j ∈ {0, 1}, (0, j) ∈ A (36)

Xh
ij ∈ {0, 1}, (i, j) ∈ A; i 6= 0; h = 2, . . . , H (37)

The reasoning given for obtaining this model shows that the linear program-
ming bound of Hop-NF equals the linear programming bound of the revised
Hop-NF formulation.

4 Surveying known Formulations

In this chapter we survey two formulations from the literature. One formu-
lation differs from the ones presented here in the sense that the whole problem
is modelled in the original graph but the underlying hop-constrained path prob-
lems are modelled on a layered graph similar to the one previously discussed.
This formulation is the previously known formulation for the HMSTP with the
best linear programming bound and here we prove that the new formulations
presented in this paper produce a linear programming bound that it is at least
as good (strictly better for several instances). The second formulation surveyed
in this section has a weaker linear programming. However, it is, as far as we
know, the only formulation for the HMSTP that uses one variable for each arc
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of the graph (although it uses an exponential sized set of so-called jump inequal-
ities which are, in a certain sense, the analogue of the cut inequalities for hop
constrained network design problems).

4.1 A Formulation Modelling the Underlying Path Sub-

problem in a Layered Graph

[14] has presented a formulation for the HMSTP that is quite similar to the
previous NF-Hop and Revised NF-Hop formulations (this formulation will be
denoted by Hop-MCF in the remainder of the text). The main difference is
that the Hop-MCF formulation has only one design variable for each arc of the
graph. Consider the binary variables xij indicating whether or not arc (i, j)
is in the solution as well as the network flow binary variables yhk

ij used in the
previous models. After some simplifications (for simplicity we skip the details
here) the Hop-MCF formulation can be rewritten as follows

Model Hop-MCF

min
∑

(i,j)∈A

cijxij (38)

s.t.
∑

i∈V \{j}

xij = 1, j ∈ V \ {0} (39)

(7), (8), (10), (12), (13), (14)

y1k
0j ≤ x0j , (0, j) ∈ A; k ∈ V \ {0} (40)

H∑

h=2

yhk
ij ≤ xij , (i, j) ∈ A; i 6= 0; k ∈ V \ {0}; (41)

xij ∈ {0, 1}, (i, j) ∈ A (42)

(43)

4.2 Comparing the Revised Hop-NF and Hop-MCF Mod-

els

The Hop-MCF rewritten in this form permits us to compare quite easily
its linear programming relaxation with the linear programming relaxation of
the revised Hop-NF model. In fact, by noting that any feasible for the revised
Hop-NF model can be transformed into a feasible solution of the Hop-MCF
formulation by using the linear equalities

x0j = X1
0j , ∀j ∈ V \ {0} (44)

xij =
H∑

h=2

Xh
ij , ∀(i, j) ∈ A; i 6= 0 (45)

we obtain
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Proposition 1 The projection of the set of feasible solutions of the revised Hop-
NF model augmented with the equalities (44, 45) into the space of the (xij , y

hk
ij )

variables is contained in the set of feasible solutions of the linear programming
relaxation of the Hop-MCF model.

That is, under (44, 45) the only essential difference between the two models
are constraints (17) in Hop-NF which are a disaggregated version of constraints
(41) in Hop-MCF (later on, with a small example we will give some intuition on
why these two sets have different modelling properties). Since adding equalities
(44, 45) to Hop-NF does not modify its linear programming value, we conclude
that

Proposition 2 The linear programming relaxation value of the revised Hop-
NF model is at least as good as the linear programming relaxation value of the
Hop-MCF model.

Before discussing whether the inequality in Proposition 2 is strict, we note
and emphasize that computational results reported in [14, 19], and [8] show
that the linear programming bound of this formulation is in many cases equal
to the integer optimal value for several medium sized (up to 40 nodes) instances
tested. [8] compare several alternate and theoretically equivalent approaches to
compute this linear programming bound. The general idea one gets from the
results on those papers is that these approaches have difficulties on instances
with 80 or more nodes.

Proposition 2 implies that we can do at least as good with the new models
proposed in this paper. However, we may not gain much by using the new net-
work flow models discussed in Section 2 since these models may suffer from the
same drawbacks as the previous Hop-MCF model. Fortunately, the observation
that the HMSTP is nothing else than a special Steiner tree problem in the lay-
ered graph will allows us to use the method described in Section 5 to optimize
over the equivalent Hop-Cut model.

We conclude this subsection by observing that, for some instances, the linear
programming bound of the new models can be strictly better than the linear
programming bound of Hop-MCF. The solution shown in Figure 3 is an extreme
point of the feasible set of the linear programming relaxation of Hop-MCF, for
an instance with n = 4 and H = 3. On the left-hand side it depicts the xij

variables with value 0.5. The corresponding yhk
ij variables for k = 3 and 4, also

with value 0.5, are depicted on the right-hand side of the same figure.
This solution is not feasible for the Hop-NF model. To see this, note that

the value of the variables y23
24 , y34

24 are equal to 0.5 in the solution of the linear
programming relaxation of the Hop-MCF formulation. However, the constraints
33 from the new model would imply X2

24 = X3
24 = 0.5 which is infeasible in the

presence of the constraints 45 X2
24 + X3

24 = x24 linking the two models. This
solution also gives some intuition why the new models have a stronger linear
programming relaxation. In the previous model Hop-MCF, a “fractional” arc
(like arc (2, 4)) is allowed to be in different positions in different paths (position
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Figure 3: Fractional solution over the x variables (on the left-hand side) and
corresponding y variables for k = 3 and 4 (on the right-hand side), labels in the
arcs indicate hop index h

3 in the path to node 4 and in position 2 in the path to node 3). A similar
situation happens with respect to arc (2,3). These situations are not allowed in
the new models.

4.3 The Jump Formulation

The formulation proposed in this subsection has been proposed in [6] and it
has been tested in [8]. In order to describe the formulation we need to introduce
some concepts. Let S0, S1, . . . , SH+1 be node-disjoint sets defining a partition
of the whole node set V such that each subset is nonempty, and that 0 ∈ S0.
We then define J = J(S0, S1, . . . , SH+1) = ∪[i+1<j][Si, Sj ] where [Si, Sj ] is the
set of arcs {(u, v) ∈ A : u ∈ Si, v ∈ Sj}. We call such set J a H-jump. Let JH

denote the set of all H-jumps. Consider, now, the following set of inequalities,
the jump inequalities,

∑

(p,q)∈J

xk
pq ≥ 1, J ∈ JH (46)

To see that (46) are valid for any H we consider the following argument
that is a simple adaptation from the one given in [5] for hop-constrained paths.
Assume we place all the nodes in H + 2 consecutive layers where the ith layer
corresponds to the nodes in Si. Assume also that a path with at most H hops
from the root node to any node k ∈ SH+1 does not contain any arc in a given
jump J . Then, the path would contain one arc in each of the (pairwise disjoint)
arc sets [Si, Si+1] and then it would contain at least H + 1 arcs which is a
contradiction. Thus, any such path must have at least one arc in each jump J .
Loosely speaking, any feasible needs to make a jump somewhere from a node
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set Si to one of the sets Si+2, . . . , SH+1. [6] proved that these inequalities are
facet defining when |S0| = |SH+1| = 1, for all H ≥ 3.

The formulation Jump is as follows

Formulation Jump

min
∑

(i,j)∈A

cijxij (47)

s.t. (39), (42)
∑

(p,q)∈[V \S,S]

xpq ≥ 1, S ⊆ V ; 0 /∈ S (48)

∑

(p,q)∈J

xpq ≥ 1, k ∈ V \ {0}; J ∈ JH (49)

Note that constraints (48) are the usual cut constraints and constraints
(49) are the jump inequalities for all terminal nodes. [8] have shown that the
projection of the set of feasible solutions of the linear programming relaxation
of Hop-MCF into the space of the xij variables is equal to the set of feasible
solutions of the linear programming relaxation of the Jump model when H =
3 and that strict inclusion occurs when H > 3. They also showed that a
characterization of the linear programming relaxation of Hop-MCF in the space
of the xij variables is rather complicated when H = 4 (this follows from a result
given in [7] where the authors show that a complete description of the dominant
of hop constrained paths contains exponential sized sets of constraints of the
form

∑

(i,j)∈C

aijyij ≥ r (50)

for adequate arc sets C and where r and aij are positive integers - for more
details, the reader is referred to [8]).

As suggested in [8], albeit having a LP relaxation which is weaker than
the LP relaxation of the Hop-MCF formulation for H > 3, the Jump formu-
lation may be worth investigating from a computational point of view because
it contains only one variable for each arc in the input graph and the memory
drawbacks encountered with the Hop-MCF model could be overcome. Since
the convex hull of spanning trees without hop constraints rooted at node 0 is
completely described by (39), (48) and nonnegativity constraint on the xij vari-
ables, a Lagrangean relaxation scheme where the relaxed problem is a directed
spanning tree and the constraints being penalized are the jump constraints (49),
is worth investigating. Such a method was tested in [6]. As the relaxed solutions
are integer, separation of the jump inequalities can be done in polynomial time
and since there are too many jump constraints, an implicit generation scheme
was implemented. Unfortunately, the results reported in that paper were very
disappointing. The main explanation for this bad behavior appears to be the
fact that it is not yet clear what is the best strategy for separating the jump
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inequalities, that are violated in a current iteration of the method, to be added
to the Lagrangean dual.

4.4 New Inequalities

As noted before, the linear programming bounds of the new formulations
are strictly better than the linear programming bounds of the Hop-MCF formu-
lation, even for H = 3. The result given in [8] suggests that even for that case,
it would be interesting to have some insight of what inequalities are implied
by the linear programming relaxation of the new formulation and that are not
redundant in the linear programming relaxation of the Jump formulation.

We show next that several sets of such inequalities correspond to stronger
versions of inequalities that result either from adding several jump inequalities
or by adding jump inequalities with cut inequalities. More precisely, we will
show that the linear programming relaxation of the Hop-Cut model implies
inequalities of the form:

Kj∑

k=1

x(Jk) +

Kc∑

k=1

x(Ck) ≥ |Kj | + |Kc| +
∑

i,j

γijxij , (51)

where Jk, k = 1 . . .Kj , are jump sets, Ck, k = 1 . . .Kc, are cut sets and γij are
nonnegative lifting coefficients.

The intuition behind this statement is based on the following two observa-
tions. First, it is easy to show that the linear programming relaxation of the
Hop-Cut formulation implies the following lifted versions (in the xij and Xh

ij

space) of the jump and the cut inequalities (given in a generic form):
∑

(p,q)∈J xpq ≥ 1 +
∑

i,j,h αh
ijX

h
ij , (52)

∑
(p,q)∈C xpq ≥ 1 +

∑
i,j,h βh

ijX
h
ij , (53)

where J and C are jump and cut sets respectively, and αh
ij and βh

ij are nonneg-
ative lifting coefficients.

Second, these two sets of lifted inequalities suggest that if we add several
constraints 52 or add some constraints 52 with some constraints 53, we might
be able to use the linking constraints 44 and 45 on some of the variables on the
right side of the resulting inequality in order to obtain a constraint of the form
51. As an example, suppose that for a given arc (i, j), i 6= 0, cut C and jump J
we are able to obtain the following two lifted inequalities

∑
(p,q)∈J xpq ≥ 1 +

∑
h∈H1

Xh
ij , (54)

∑
(p,q)∈C xpq ≥ 1 +

∑
h∈H2

Xh
ij , (55)

where H1∪H2 = {2, ...., H}. Adding up the two inequalities and using 45 gives:
∑

(p,q)∈J xpq +
∑

(p,q)∈C xpq ≥ 2 + xij , (56)

which is stronger than the the inequality obtained by adding the original jump
and cut inequality. Clearly, similar examples with more arcs on the right-hand
side may also hold.
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4.4.1 Generating Lifted Jump and Lifted Cut inequalities in the

space of the xij and Xh
ij variables

First, we show how to obtain one general version of a lifted jump inequality
52. For a fixed hop parameter H , let us consider a partition S0, S1, . . . , SH+1

with 0 ∈ S0 and let us considered the layered graph partitioned in a similar
manner, that is, set Sih corresponds to the node set Si in the layer h of the
layered graph (for i = 1, . . . , H + 1 and h = 1, . . . , H). Now, consider a cut
[A, B] in the layered graph such that

B =
⋃

h=1,...,H(
⋃

i=h+1,...,H+1 Sh
i ). (57)

Figure 4 gives an example of such a cut in the layered graph for an instance
with H = 3 and n = 4. Now, by adding adequate trivial inequalities Xh

ij ≥ 0 to
the left-hand side of the cut inequality and by using the linking constraints 44
and 45 we obtain the following lifted jump inequality

∑

(p,q)∈J

xpq ≥ 1 +

H−2∑

j=1

H∑

i=j+2

H∑

h=i

Xh(Sj , Si) +

H−1∑

j=2

H+1∑

i=j+2

j∑

h=2

Xh(Sj , Si),

J = J(S0, S1, . . . , SH+1)(58)

Note that the Xh
ij variables used on the expression on the righthand side of

the inequality correspond to the trivial inequalities that have been added to the
original cut inequality. Note also, that the arcs associated to these variables
either are inside the set A (arcs associated to variables in the first summation
term in the right hand-side of the inequality) or inside the set B (arcs associated
to variables in the second summation in right hand-side) of the cut.

(1,1)

0

(1,2) (2,2)

(1,3) (2,3) (3,3) (4,3)

(4,1)(3,1)(2,1)

(3,2) (4,2)

Figure 4: Cut in the layered graph corresponding to a lifting of a jump inequality
in the original graph

As an example consider an instance with H = 3 and n = 4, and the partition
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J = J({0}, {1}, {2}, {3}, {4}). Then, the previous inequality becomes

∑

(p,q)∈J

xpq = x02 + x03 + x04 + x13 + x14 + x24 ≥ 1 + X3
13 + X2

24, (59)

as shown in Figure 4.
With respect to the lifted cut inequality 53, let S, 1 < |S| < n be a set in the

original graph not containing the root and consider the cut set C = [V \ S, S].
For any vertex k ∈ S, the lifted cut inequality is as follows:

∑

(p,q)∈C

xpq ≥ 1 +
∑

i∈V \S,i6=0

∑

j∈S\{k}

XH
ij . (60)

For this inequality we have omitted the derivation. However, a simple exam-
ple shows how to obtain the corresponding derivation. Consider, again, n = 4
and H = 3. When S = {3, 4} and k = 3, we obtain

∑

(p,q)∈C

xpq = x03 + x04 + x13 + x14 + x23 + x24 ≥ 1 + X3
14 + X3

24, (61)

as shown in Figure 5.

(1,1)

0

(1,3) (2,3) (3,3) (4,3)

(4,1)(3,1)

(3,2) (4,2)

(2,1)

(1,2) (2,2)

Figure 5: Cut in the layered graph corresponding to a lifting of a cut inequality
in the original graph

4.4.2 Generating new inequalities in the xij space

Fist, we show how to generate a constraint that can be seen as a stronger
version of an inequality that is obtained by adding a lifted jump inequality
58 with a lifted cut inequality 60. The main observation to generate the new
inequality is to note that in the lifted variables of 60 the hop index h is always
equal to H and that the second summation in the right hand side of 58 contains
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the expression
H−1∑

h=2

Xh[SH−1, SH+1].

Thus, if for a fixed hop parameter H , we consider a partition J = {S0, S1, . . . , SH+1}
with S0 = {0}, for the lifted jump inequality and, for the lifted cut inequality,
we consider a set S such that SH+1 is contained in S and SH−1 is not contained
in S, and add the two inequalities, we obtain

∑
(p,q)∈J xpq +

∑
(p,q)∈C xpq ≥ 2 +

∑H
h=2 Xh[SH−1, SH+1] + “extra terms”.(62)

By discarding the extra terms and using 45 on the summation, we obtain the
cut/jump inequality:

∑
(p,q)∈J xpq +

∑
(p,q)∈C xpq ≥ 2 + x[SH−1, SH+1]. (63)

For an instance with n = 4, H = 3, J = J [{0}, {1}, {2}, {3}, {4}], C=[{0,1,2},
{3,4}] the previous expression becomes

x02 + 2x03 + 2x04 + 2x13 + 2x14 + x24 + x23 ≥ 2, (64)

which is exactly the inequality obtained from the sum of the two lifted inequal-
ities 59 and 61. It can be seen that this inequality cuts the fractional solution
shown in Figure 3. For instances with H = 4 and 5, we have also found in-
stances whose optimal linear programming solutions of the Hop-MCF model do
not satisfy constraints 63.

The second inequality is obtained by combining several jump inequalities
obtained in a “circular” fashion. Consider a partition of the node set V \ {0}
into H + 1 subsets A1, A2, . . . , AH , AH+1 and consider H + 1 lifted jump in-
equalities 58 where the subsets are as follows. First inequality: S0 = {0}, S1 =
A1, S2 = A2, . . . , SH = AH , SH+1 = AH+1; second inequality: S0 = {0}, S1 =
A2, S2 = A3, . . . , SH = AH+1, SH+1 = A1; . . .; H-th inequality: S0 = {0}, S1 =
AH , S2 = AH+1, . . . , SH = A1, SH+1 = A2; and (H + 1)-th inequality S0 =
{0}, S1 = AH+1, S2 = AH , . . . , SH = A2, SH+1 = A1. After adding all of these
inequalities, using 44 and 45 on the right-hand side and discarding some vari-
ables, we obtain the following inequality (for simplicity we omit the derivation
here):

Hx[{0}, V \ {0}] +
H+1∑

i=1

H+1∑

j = 1; j 6= i,
(j − 1) 6= i mod H

x[Si, Sj ] ≥ H + 1. (65)

For example, if n = 4, H = 3, S0 = {0}, S1 = {1}, S2 = {2}, S3 = {3}, S4 = {4},
we obtain:

3x01 + 3x02 + 3x03 + 3x04 + x13 + x14 + x21 + x24 + x31 + x32 + x42 + x43 ≥ 4.(66)
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Again, experiments with small instances have shown that these inequalities are
not redundant in the linear programming relaxation of the Hop-MCF formula-
tion.

By presenting these two sets of inequalities we have given some intuition (in
the design space) of what gain by modelling the HMSTP in the layered graph.

5 The Branch-and-Cut Algorithm

The branch-and-cut algorithm used to solve model Hop-Cut is based on the
algorithm proposed by [31] for the STP. The main improvement of this algorithm
over previous algorithms based on the same directed cut model, such as the one
presented in [24], lies in the effective use of dual and primal heuristics to fix
variables and speed up the convergence of the cutting plane generation. The
following algorithmic elements were incorporated into the code used to solve
model Hop-Cut:

1. Dual Ascent Heuristic: Initially proposed by [38] for the directed
multi-commodity flow model, it can be straightforwardly adapted for the
directed cut model. This fast heuristic usually yields quite good lower
bounds, typically less than 5% bellow the optimal value.

2. Hot-Starting the Cut Generation: The Dual Ascent Heuristic may be
used to provide a good initial set of cuts to be used in the cutting plane
generation. In fact, by solving the linear program with those cuts one
always obtain a lower bound at least as good as the one provided by Dual
Ascent Heuristic. This hot-start may greatly reduce the number of cut
rounds required to solve the linear programming relaxation of the model.

3. Using the Fractional Solutions to Guide Primal Heuristics: An
initial primal solution is obtained by applying the well-known Prim Short-
est Path Heuristic (Prim-SPH) (see [34]) over the layered graph and im-
proving it by the key-path and node local search [32]. The solutions ob-
tained in this way are only reasonably good. However, after each iteration
of the cutting plane method, the fractional solutions of the linear programs
are used to compute pseudo-costs, that are, then, feed to the Prim-SPH.
Those pseudo-cost give incentives for using arcs that appear consistently
in those fractional solutions. The subsequent local search is then applied
using the original costs.

4. Fixing by Reduced Costs: The value of a known primal solution per-
mits to remove variables from the model by using reduction tests based
on arc reduced costs provided either by the Dual Ascent Heuristic or by
subsequent linear programs. The removed variables would never appear in
any improving solution. The fixing by reduced costs can be very effective
when both primal and dual solutions are close to the optimal.

More details about the above mentioned elements can be found in [31, 35, 37].
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6 The Diameter Constrained Spanning Tree Prob-

lem

In this section we adapt the previous methods to a variation of the HMSTP,
the Diameter constrained Spanning Tree problem (DMSTP). Given a prescribed
graph G = (V, E) with node set V and edge set E as well as a positive cost ce

associated with each edge e of E, we wish to find a minimal spanning tree with
a bound D on the diameter of the tree, which is the maximum number of edges
in any of its paths. When D = 2 or 3, the problem is easy to solve. However, it
is NP-Hard when D ≥ 4 (see [9]). As noted before, the DMSTP differs from the
HMSTP in the sense that here we constrain the path between each pair of nodes
while in the HMSTP, only the paths from the special node are constrained. This
observation suggests that the DMSTP appears to be much more complex than
the HMSTP.

However, several approaches for the DMSTP (see, for instance, [1, 16, 33, 20])
have used the properties of tree centers in order to transform the DMSTP into
special versions of the HMSTP. For instance, with respect to situations with
parameter D even the, following center property proves to be very useful.

Property 1 A tree T has diameter no more than an even integer D if and only
if some node p of T satisfies the property that the path from node p to any other
node of the tree contains at most D/2 edges.

This property permits us to transform the DMSTP, for situations when D is
even, into an HMSTP in an enlarged graph with an extra root node, node 0, and
which is connected to any other node by an edge of zero cost. In the enlarged
graph, one must determine a hop constrained spanning tree with depths at
most D/2 + 1 and such that the degree of the extra node is equal to 1 (the
edge emanating from this node will determine the node of the original graph
that will serve as the center of the diameter constrained tree). The extra degree
constraint is easy to incorporate in the code described in the previous section.
Thus, the complexity of solving the DMSTP with diameter D even is essentially
the same as solving the HMSTP.

In our computations we use the model described in Section 3 with the small
adaptation mentioned in the previous paragraph. An example depicting the
transformation is shown in figures 6 and 7. Since, the model in [16] is the same
as the model in [14], we can use Proposition 2 to say that for D even, the linear
programming relaxation of the adapted layered graph model we use here is at
least as good as the linear programming relaxation of the model proposed by
[16]. Again, by using our exposition in Section 4, it is not difficult to argue that
for some instances, strict dominance occurs.

For situations when D is odd, there appears not to be any agreement in what
should be the best model to use. The reason for this is that the straightforward
adaptation of the center property for D odd (“a tree T has diameter no more
than D if and only if some edge (p, q) of T satisfies the property that the
path from any other node of the tree to p or q contains at most (D − 1)/2
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Figure 6: Transformation of DMSTP for D even: original graph of an instance
with D = 4 on the left-hand side and the corresponding layered graph on the
right-hand side.
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Figure 7: Optimal DMST in the original graph (cost 21) and its corresponding
Steiner tree in GL (D = 4)

edges”) is not easy to combine either with a Network Flow model (as in [14]) or
with the layered graph approach proposed here unless one allows the creation of
special nodes corresponding to the edges of the graph (as suggested and tested in
[16]. However, this modification leads to oversized networks and the proposed
approaches on these networks usually take much more time (when computer
storage requirements do not become a bigger problem) than similar approaches
used for situations with D even. Alternative approaches have been suggested in
[16] and [15] where 2-path (or 2-flow) and 2-tree based models where efficiently
combined with 2-center properties for trees with diameter odd. However, these
properties do not appear to be easily combined with the layered graph approach
proposed in the previous sections.

A different and perhaps less straightforward transformation for the situations
when D is odd and which is suitable to be modelled by the layered graph
approach is described as follows: add two special dummy layers (0 and -1)
corresponding to the possible choices of nodes to be the extremes of the central
edge of the tree. Node 0 is connected to all nodes in layer 0 with zero cost
arcs. We add a degree constraint guaranteeing that exactly one of these edges
is chosen. Every node in layer 0, (i, 0), is linked to any node (j,−1), such that
(i, j) ∈ E, in layer -1 by an arc of cost cij . We also add a constraint stating
that exactly one of these edges is chosen. This constraint and the previously
described constraint guarantee that the two extremes of the central edge are
chosen and its cost is accounted. Then we add arcs of cost 0 linking each
pair of nodes (i,−1) and (i, 0). In this way we guarantee that the two nodes
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(i, 0) and (j, 0) are selected if edge (i, j) is the central edge of the tree. The
remainder of the layered of the graph is as before. Figure 8 shows a graph and
the corresponding layered graph for D = 5 and Figure 9 gives an example of
corresponding solution in the two graphs.
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Figure 8: Transformation of DMSTP for D odd: original graph of an instance
with D = 5 on the left-hand side and the corresponding layered graph on the
right-hand side.
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Figure 9: Optimal DMST in the original graph (cost 20) and its corresponding
Steiner tree in GL (D = 5)

We note that it does not appear to be easy to relate the new model for D
odd with previous modelling approaches since the transformations appear to be
quite different.

7 Computational Results

In this section we give results with the branch-and-cut method described in
section 5 for the two problems, the HMSTP and the DMSTP. The tests were
performed in a PC Intel Core 2 Duo, 2.2 GHz, with 2Gb of RAM. The method
was implemented using the callable routines in XPRESS-MP 2007A, that both
solves linear programs and may perform branch to obtain the optimal integer
solutions.
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7.1 Computational Results for the HMSTP

The experiments use some complete graph instances on 21, 41, 61, 81, 101,
121 and 161 nodes that have been used in previous papers for the HMSTP
(see, for instance, [8]) and for other constrained spanning trees, namely the
capacitated minimum spanning tree problem (see, for instance [36]). For each
size, we have considered one random cost instance, denoted by TR, and two
Euclidean cost instances. Two locations for the root are considered for the
Euclidean instances: Instances that have the root located in the center of the
grid, denoted by TC, and instances that have the root located on a corner of
the grid, denoted by TE. The hop parameter H was set to 3, 4 and 5 in every
case.

In order to reduce the size of each instance, we have used the following simple
arc elimination test (see [12]). If cij > c0j , then any optimal solution does not
uses arc (i, j) and if cij = c0j (i 6= 0), then there is an optimal solution without
arc (i, j). This means that arc (i, j) can be eliminated whenever cij ≥ c0j . This
arc elimination test is applied to every instance before its solution. Table 1
shows, for each instance, the percentage of number of arcs still remaining after
the elimination test was performed.

Tables 2 to 4 give information on the performance of the method for the TC,
TR and TE instances. The first column gives the number of nodes (without the
root node) of the corresponding graph. The second column gives the value
of H . The third column gives the value of the integer optimal value and the
fourth gives the value of the bound produced by the Hop-Cut model. The
next columns give, respectively, the value of the lower bound obtained by Dual
Ascent Heuristic, the value of the upper bound obtained by the first application
of Prim-SPH + local search and the number of inequalities (3) added in the
branch-and-cut algorithm. Finally, the last column gives the total CPU time
in seconds spent by the whole method (a time of 0 indicates that the instance
was solved in less than 1 milisecond, usually because both Dual Ascent and
Prim-SPH found the same bound). In all instances, except on instance TE160
with H = 5, the solution of the linear programming relaxation of the Hop-Cut
model was integral and no branching was performed.

Table 5 compares the new method, in terms of bounds and CPU times (see
column LP-HOP-CUT and subsequent column), with the lower bounds taken
from the model of [14] described in Section 4 (see column LP-G and subsequent
column), on instances with n = 40 and n = 80. These results show that the
theoretical dominance of the new lower bound is reflected in practice. They also
show that the new approach (namely, the branch-and-cut method applied to the
theoretical strong Hop-Cut model) solves quite easily instances with up to 160
nodes. Previously, only some instances with up to 80 nodes have been solved.
The computational results of the model of [14] were obtained on a PC Pentium
IV, 2.4GHz with 768Mb of RAM and used the callable routine CPLEX 7.1.
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n 20 40 60 80 100 120 160
TC 26% 27% 25% 25% 25% 27% 53%
TE 70% 67% 70% 68% 70% 75% 78%
TR 44% 46% 51% 46%

Table 1: Remaining size of reduced HMSTP instances.

n H OPT LP DA PRIM-HOP NCUTS T(s)
3 340 340 340 340 - 0

20 4 318 318 318 318 - 0
5 312 312 312 312 - 0
3 609 609 601 609 190 0.06

40 4 548 548 540 548 213 0.07
5 522 522 516 524 337 0.24
3 866 866 857 892 479 0.35

60 4 781 781 775 795 834 1.26
5 734 734 732 734 153 0.15
3 1072 1072 1066 1084 556 0.49

80 4 981 981 973 995 2028 46.9
5 922 922 920 934 1286 6.57
3 1259 1259 1237 1290 1843 15.3

100 4 1166 1166 1158 1198 3206 190
5 1104 1104 1098 1116 3590 251
3 1059 1059 1051 1102 1186 2.68

120 4 926 926 921 962 1743 25.9
5 853 853 849 875 2369 103
3 1357 1357 1349 1426 2683 160

160 4 1133 1133 1130 1163 3495 643
5 1039 1039 1033 1055 8431 10292

Table 2: TC instances.

7.2 Computational Results for the DMSTP

For the computational experiments concerning the DMSTP we have per-
formed two groups of tests. In the first group, our aim is to compare the
method described in this paper with the other methods described in the recent
literature. In the second group we consider much larger instances in order to
show that the method proposed in this paper can solve many instances that can
not be solved previous methods.

For the first group we report results given by the methods described in
[33], [20], [16] (for situations with D even), [17] (for situations with D odd),
and [29]. The first method uses formulations based on enhanced versions of
the Miller-Tucker-Zemlin constraints. The second uses formulations based on
precedence variables. The method described in [16] is based in the Hop-MCF
formulation readapted for the DMSTP as explained in section 6.2. The method
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n H OPT LP DA PRIM-HOP NCUTS T(s)
3 168 168 168 168 - 0

20 4 146 146 146 146 - 0
5 137 137 137 137 - 0
3 176 176 172 177 126 0.05

40 4 149 149 147 149 154 0.13
5 139 139 139 139 - 0
3 213 213 206 217 316 0.17

60 4 152 152 151 153 240 0.18
5 124 124 124 124 - 0.02
3 208 208 206 208 170 0.14

80 4 180 180 178 180 267 0.36
5 164 164 164 164 - 0.07

Table 3: TR instances.

n H OPT LP DA PRIM-HOP NCUTS T(s)
3 449 449 449 457 114 0.03

20 4 385 385 385 385 - 0.01
5 366 366 361 366 122 0.05
3 708 708 708 728 301 0.13

40 4 627 627 624 629 267 0.14
5 590 590 589 596 398 0.41
3 1525 1525 1521 1569 488 0.48

60 4 1336 1336 1328 1373 923 3.43
5 1225 1225 1225 1229 374 0.46
3 1806 1806 1802 1840 753 1.24

80 4 1558 1558 1549 1580 917 4.29
5 1442 1442 1435 1477 2878 226
3 2092 2092 2082 2111 1344 9.85

100 4 1788 1788 1771 1888 2887 356
5 1625 1625 1625 1699 1592 36.6
3 1267 1267 1258 1352 1708 15.6

120 4 1074 1074 1071 1155 3043 574
5 969 969 962 1000 5071 3397
3 1496 1496 1488 1616 2282 76.2

160 4 1229 1229 1221 1286 6458 5626
5 1107 1106.5 1098 1182 15764 53797

Table 4: TE instances.

described in [17] is based on two center properties of D diameter situations. The
more recent method [29] is based on constraint programming. These instances
are taken from [33] and include dense graph instances with up to 40 nodes.
Although the methods described in [16] and [17] have been originally tested for
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PROB, n H OPT LP HOP-CUT T(s) LP G T(s)
3 609 609 0.06 604.5 2+48

TC, 40 4 548 548 0.07 547 8+3
5 522 522 0.24 522 13
3 176 176 0.05 176 2

TR, 40 4 149 149 0.13 148.3 9+3
5 139 139 0 139 26+1
3 708 708 0.13 701.7 175+1984

TE, 40 4 627 627 0.14 625.3 969+9797
5 590 590 0.41 588.1 2794+23052
3 1072 1072 0.49 1069 157+3204

TC, 80 4 981 981 46.9 976.5 1811+23659
5 922 922 6.57 920.6 4198+7590
3 208 208 0.14 208 64+3

TR, 80 4 180 180 0.36 180 676+4
5 164 164 0.07 164 1271+6
3 1806 1806 1.24 1792.5 16127+(r)

TE, 80 4 1558 1558 4.29 1544.5 160127+(r)
5 1442 1442 226 - -

Table 5: Comparing with the Hop-MCF model.

sparse graph instances, we have specially run them (on a Pentium IV 2.4 GHz)
for these dense graph instances in order to permit us to compare all methods
in the same data set. Table 7.2 shows for each method, the percent root gap
(except for the constraint programming method) and the total time in seconds
to solve the instance. Times from [33] and [20] were both obtained on a Pentium
IV 2.8 GHz, those from [29] on a Pentium IV 3 GHz. The last row in the table
show averages.

For the second group we use the same instances as the ones used for the
HMSTP, with up to 161 nodes. In these results one can, again, see that the
proposed method is quite strong in the sense that for almost all tested instances
the linear programming bound is optimal. It is also curious to see the effect
of the new transformation for situations when D is odd. In our results, it does
not appear to be any significant difference between the two cases, D even and
D odd, which is in contrast with previous transformations / approaches. Figure
10 depicts an optimal solution of the TE instance with 161 vertices, for D = 5.
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